
NSCC ASPIRE 2A AI System

ASP2A - AI QuickStart Guide - 2024



Table of Contents

1 - Introduction of ASPIRE 2A and AI Systems
2 - The job management with PBS Pro
3 - Building AI environment

4 - Hand on examples

NSCC AI System 2



Summary of ASPIRE 2A

NSCC AI System 3



NSCC AI System 4

Slingshot 100G 
Interconnect

• Dragonfly Topology

35 PB Storage

• I/O bandwidth up to 
500GB/s

• GPFS and Lustre File 
System

AI Cluster

18 nodes  (96 x A100)
➔ 12 nodes with 4x A100 40GB 

with 12TB nvme.
➔ 6 nodes with 8x A100 40GB 

with 14TB nvme

AI Nodes of ASPIRE 2A



ASPIRE 2A job queues
There are two route queues:-

1. normal ->  pbs101
2. ai   ->  pbs102

5



Selection rules of resources

6

Route 
Queue

Execution 
Queue

GPU Qty. Max Walltime
(Hour)

Max Run Jobs 

ai

aidev [1,4] (0,2] -

aiq1 1 (2,24] 2

aiq2 [2,3] (2,24] 6

aiq3 4 (2,24] 2

aiq4 [5,64] (2,24] 2

ailong [1,4] (2,120] 2



Best Practices
❏ The AI nodes are most suited to large, batch 

workloads
– e.g. training complex models with large datasets

❏ We encourage users to do development and 
preliminary testing on local resources or aidev 
queue

❏ Users are encouraged to use the optimized 
NVIDIA GPU Cloud Docker images. And convert 
them to Singularity images.

NSCC AI System 7



Filesystems
There are multiple filesystems available on the NSCC systems:-

/home  and /data/projects GPFS file system

/scratch high-performance Lustre filesystem

/raid Local nvme disks  on each AI node

Lustre($SCRATCH) and raid($TMPDIR) are better for I/O intensive workloads.

Data policy: https://help.nscc.sg/wp-content/uploads/Appendix-1_Data-Management-and-Retention-Policy_v2_final.pdf

NSCC AI System 8

File 
System 

Mount point Total 
Capacity 

Quota Per 
user [Fixed]

Data 
Retention 
Policy

Lustre /scratch 10 PB 100TB Purge

GPFS /home/users 

15PB

50GB Yes

GPFS /home/project Based on 
project

Yes 

Local
$TMPDIR

/raid/pbs.<jobid
>.pbs101

12/14TB
Auto-created Auto-removed

https://help.nscc.sg/wp-content/uploads/Appendix-1_Data-Management-and-Retention-Policy_v2_final.pdf


❏ Submit jobs
❏ Job script example
❏ Check job and node states
❏ Resources selection(GPUs)
❏ Best Practices

2 -The job management with PBS Pro

9



Submit jobs: an interactive job

What an interactive job can do?
❏ For debugging
❏ For testing before batch jobs

NSCC AI System 10

qsub -I -l select=1:gpus=1 -l walltime=1:00:00 -P <project> -q ai



Batch Job Submission

Accessing the batch scheduler generally involves 3 commands:

See https://help.nscc.sg/user-guide/ for more information on how to use the PBS scheduler

Introductory workshops are held regularly, more information at https://www.nscc.sg/hpc-calendar/

NSCC AI System 11

To submit a batch job qsub jobscript

To query a job state qstat @pbs102

To Kill a job qdel <jobid> @pbs102

https://help.nscc.sg/user-guide/
https://www.nscc.sg/hpc-calendar/


Example: PBS Job Script (Headers)
#!/bin/sh
## Lines which start with #PBS are directives for the scheduler
 
## The following line requests the resources for 1 gpu, ngpus=4 for 4 GPUs.
#PBS -l select=1:ngpus=1

## Run for 1 hour, modify as required
#PBS -l walltime=1:00:00

## Submit to correct queue for AI cluster access
#PBS –q ai

## Specify project ID
#PBS -P <projectId>

## Job name
#PBS -N <jobName>

## Merge standard output and error from PBS script
#PBS -j oe

NSCC AI System 12



Example PBS Script (Commands)

# Change to directory where job was submitted
cd "$PBS_O_WORKDIR" || exit $?

# Specify which singularity image to use for container
image="/app/apps/containers/pytorch/pytorch-nvidia-22.02-py3.sif"

# Pass the commands that you wish to run inside the container
singularity run --nv $image python scripts.py <args>
or
singularity exec --nv $image python scripts.py <args>

NSCC AI System 13



Check job and node states
3 available options to see which host a job is running on:

$ qstat -f JOBID @pbs102
Job Id: 1850335.pbs101
    Job_Name = STDIN
    Job_Owner = michaelqi@asp2a-login-nscc02.head.cm.asp2a.nscc.sg
    resources_used.cpupercent = 0
    resources_used.cput = 00:00:00

$ qstat -wan JOBID @pbs102
pbs102: 
                                                                                                   Req'd  Req'd   Elap
Job ID                         Username        Queue           Jobname         SessID   NDS  TSK   Memory Time  S Time
------------------------------ --------------- --------------- --------------- -------- ---- ----- ------ ----- - -----
1850335.pbs101                 michaelqi       aidev           STDIN             415837    1    16  110gb 02:00 R 00:06
   asp2a-gpu002/3*16

$ pbsnodes -Sj asp2a-gpu0{04..05} 
                                                        mem       ncpus   nmics   ngpus
vnode           state           njobs   run   susp      f/t        f/t     f/t     f/t   jobs
--------------- --------------- ------ ----- ------ ------------ ------- ------- ------- -------
asp2a-gpu004    job-busy             1     1      0    126gb/1tb   0/128     0/0     0/8 1801705
asp2a-gpu005    job-busy             1     1      0    126gb/1tb   0/128     0/0     0/8 1801705

NSCC AI System 14



Resources selection (GPUs)
Specify required ngpus resource in job script:  Example: 1_ai_environment/gpu.selection.sh
#PBS -l select=1:ngpus= N

where N is the number of GPUs required, 16xN CPU cores and memory will be 
selected by PBSpro
$ echo nvidia-smi | qsub -l select=1:ngpus=1 -l walltime=0:05:00 -q ai –P <projID>
1852792.pbs101
$ grep A100 STDIN.o1852792
|   0  NVIDIA A100-SXM...  On   | 00000000:88:00.0 Off |                    0 |

$ echo nvidia-smi | qsub -l select=1:ngpus=2 -l walltime=0:05:00 -q ai –P <projID>
1852793.pbs101
|   0  NVIDIA A100-SXM...  On   | 00000000:46:00.0 Off |                    0 |
|   1  NVIDIA A100-SXM...  On   | 00000000:C7:00.0 Off |                    0 |

$ echo nvidia-smi | qsub -l select=1:ngpus=4 -l walltime=0:05:00 -q ai –P <projID>
1852794.pbs101
|   0  NVIDIA A100-SXM...  On   | 00000000:07:00.0 Off |                    0 |
|   1  NVIDIA A100-SXM...  On   | 00000000:46:00.0 Off |                    0 |
|   2  NVIDIA A100-SXM...  On   | 00000000:85:00.0 Off |                    0 |
|   3  NVIDIA A100-SXM...  On   | 00000000:C7:00.0 Off |                    0 |

NSCC AI System 15



GPU Environment variable 
echo $CUDA_VISIBLE_DEVICES

When the job gets the GPU resources, the $CUDA_VISIBLE_DEVICES is assigned by PBSpro.

For some apps, if this value cannot be accepted. 
then export it by the ids to replace the UUIDs

If select 2 GPUs,

16

CUDA_VISIBLE_DEVICES=GPU-50ee0fc4-bb3d-920c-8039-da7054e1496b

export CUDA_VISIBLE_DEVICES=0

export CUDA_VISIBLE_DEVICES=0,1



Best Practices
❏ Access is through PBS job scheduler
❏ We encourage workloads which can scale up 

to utilise all 8 GPUs on a node or run across 
multiple nodes

❏ Users can request fewer than 8 GPUs
❏ Multiple jobs will run on a node with GPU 

resource isolation (using cgroups)
❏ You will only see the number of GPUs you 

request
❏ Select whole GPUs in a node

NSCC AI System 17

-l select=1:ngpus=4  VS  -l select=4:ngpus=1



❏ Python virtual environment (using conda for example.)
❏ Singularity image

Building AI environment

18



Python virtual environment
Python is a popular programming language for artificial intelligence (AI) research. And it has a 
large library of AI-related libraries and frameworks.

Python virtual environment is a tool that helps to keep dependencies required by different 
projects separate by creating isolated python virtual environments for them. With Python virtual 
environment, the multi-research environment can be created and switch easily to adapt 
different AI models.

Conda is an open-source package manager and environment management system. Conda as 
a package manager helps you find and install packages of AI projects.

19



Create the virtual env.
❏ modules and create env:-

❏ Activate env. and install packages:-

❏ Deactivate env:-

Note: Do not add conda init in ~/.bashrc, in some case, it will cause login very slow. And double load the conda 
default environment when the miniforge3 module file is loaded.

20

module load miniforge3

conda create -n myenv python=3.11

conda activate myenv

conda install -y mamba -c conda-forge
mamba install pytorch torchvision torchaudio pytorch-cuda=11.6 -c 
pytorch -c nvidia

conda deactivate



In job script

21

# load miniforge3
module load miniforge3

# activate the env
conda activate myenv

# run python scripts
python scripts.py <args>



Singularity images
A Singularity image is a container image that is used to run software in a reproducible 
and isolated environment. It is an open-source project that is often used in HPC research 
environments.

Singularity images are similar to Docker images, but they have a few key 
differences:-

1) Singularity images are not tied to a specific operating system. This means that they 
can be run on a variety of different machines, regardless of the operating system that is 
running on the machine.

2) Singularity images are more secure than Docker images. This is because Singularity 
images are sandboxed, which means that they are isolated from the host machine.

3) Singularity images are more portable than Docker images. This is because Singularity 
images can be easily moved from one machine to another.

22



Ways to Create Singularity Image

❏ Singularity containers 
(https://sylabs.io/docs/)

❏ Docker hub, NGC Cloud 
(https://catalog.ngc.nvidia.com/)

❏ Images are created from your workstation or 
PC.

NSCC AI System 23

https://sylabs.io/docs/


From Docker Images

❏ Find the image
https://hub.docker.com/

https://catalog.ngc.nvidia.com/

 $singularity build <imageName>.sif docker://docker/Image:tag

 $singularity build pytorch_23.06.sif 
docker://nvcr.io/nvidia/pytorch:23.06-py3

 $singularity build pytorch_23.06.sif docker-daemon://pytorch:23.06-py3

❏ Remove the cache if necessary
 $rm -rf ~/.singularity/cache

NSCC AI System 24

https://hub.docker.com/
https://catalog.ngc.nvidia.com/


Local images on ASPIRE 2a

/app/apps/containers

pytorch-nvidia-22.04-py3.sif  
pytorch-nvidia-22.12-py3.sif 

tensorflow_2.3.0_gpu_py3_nltk_3.6.7.sif  
tensorflow-nvidia-22.04-tf2-py3.sif  
tensorflow-nvidia-22.12-tf2-py3.sif

25



Hands-on
       

   git clone /app/workshops/introductory/ai

Example PBS job scripts to demonstrate how to:
1. create AI environment
2. conda
3. singularity image
4. submit jobs with GPU selection
5. run a standard MXNet training job
6. run a jupyter-note job

See https://help.nscc.sg/user-guide/ for more information on how to use the NSCC 
systems

NSCC AI System 26

https://help.nscc.sg/user-guide/


Hands-on
Step 1: Log on to NSCC ASPIRE 2A
Step 2: Run the following commands to clone the hands-on examples

git clone /app/workshops/introductory/ai
ls -l ai
drwxr-xr-x 2 michaelqi fujitsu 4096 Jul 12 16:39 1_ai_environment
drwxr-xr-x 2 michaelqi fujitsu 4096 Jul 12 16:39 2_singularity_image
drwxr-xr-x 2 michaelqi fujitsu 4096 Jul 12 16:39 3_job_with_multi-gpus
drwxr-xr-x 2 michaelqi fujitsu 4096 Jul 12 16:39 3_pytorch_data_parallel

Use “qstat @pbs102” to check job status and when jobs have finished examine output files to 
confirm everything is working correctly

NSCC AI System 27



Create AI environment
❏ Create a pytorch environment with miniforge3

❏ Location: ai/1_ai_environment
❏ file: conda.env.md

module load miniforge3
conda create -n myenv python=3.11
# Activate env and install packages
conda activate myenv
conda install -y mamba -c conda-forge
mamba install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c 
nvidia

28

Example 1



❏ Example folder: ai/2_singularity_image
qsub -I -l select=1:ngpus=1 -q ai -P <projectId> -l walltime=02:00:00 

module load singularity

singularity build pytorch_22.02-py3.sif 
docker://nvcr.io/nvidia/pytorch:22.02-py3

❏ Submit a job which using pre-created 
singularity image:

qsub singularity-tensorflow.pbs

29

Example 2

Build singularity image from NGC 



Run a multi-gpu AI codes

Location: ai/3_job_with_multi_gpus

submit a job with 4 GPUs

qsub train.pbs

30

Example 3



Example 4: Jupyter-lab
Jupyter lab job:-

#!/bin/bash

#PBS -q ai
#PBS -l select=1:ngpus=1
#PBS -l walltime=2:00:00
#PBS -P <projectid>
#PBS -N jupyter
#PBS -j oe

# Change directory to where job was submitted
cd $PBS_O_WORKDIR || exit $?

# get a random port
PORT=$(shuf -i8000-8999 -n1)
module load singularity

echo -e "ssh -N -L $PORT:`hostname`:$PORT $USER@aspire2a.nus.edu.sg\n">>sshtunnel.$PBS_JOBID

singularity  exec --nv -B /scratch,/app \
/app/apps/containers/pytorch/pytorch-nvidia-22.04-py3.sif jupyter-lab \

        --no-browser --ip=0.0.0.0 --port=$PORT \
        >> sshtunnel.$PBS_JOBID 2> jpylab.$PBS_JOBID

NSCC AI System 31



Example 4: (continue)
❏ Create ssh tunnel with a new terminal, the 

command in ssh tunnel.<jobid>
ssh –N –L 8541:asp2a-gpu003:8541 yourId@<aspire2a.login>

❏ Open Jupyter lab with local web browser
To access the notebook, find the url in “jpylab.<jobid>”:
http://localhost:8541/?token=5839e1dda5899003a05666d059de1552ce67f
fd7df49a973
     or 
http://127.0.0.1:8541/?token=5839e1dda5899003a05666d059de1552ce67f
fd7df49a973

NSCC AI System 32



SSH TUNNEL

❏ Safety connection
❏ Bypass firewall

33



Thank you!

34


