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ASPIRE 2A+ Architecture
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DGX H100 SuperPOD: Overview

@ Nodes: 40 compute nodes, 2 login Non-blocking Leaf-Spine Topology:
nodes, 2 admin nodes o sner
T see

@ Parallel filesystem storage:

o /home + /data/projects: 25PB
e /scratch: 2.4 PB

@ Network topology: Non-blocking
Leaf-Spine. Leaf switches connect all
compute nodes. Spine switches
connect all Leaf switches

T
Gt ahpenon
@ Built for Al requirements:

o Support for NGC containers
through Enroot

FP8 and transformer engine
Large memory GPU

Fast intra-node GPU comm.
Tensor cores with more
throughput than A100.

FUjiTsu
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Nodes and Interconnects

DGX H100 node:

Overview:
@ Infiniband interconnect with 400 oo W oo
HCA/NIC HCA/NIC HCA/NIC
GB/s HCAs (ConnectX-7) for St || e | Svt [l e

inter-node communications.

@ These HCA's allow GPUDirect
RDMA through Infiniband fabric for
inter-node GPU-GPU comm.

@ These HCA's also allow MPI
communications via CPU

@ NVLINK 4.0 for intra-node GPU-GPU
communications at 900GB/s

@ Nvlinks are connected by NVSwitch
which has several TB/s bandwidth.

@ 28 TB local SSD storage (\raid) on WIS = SRS (2R DGX H100
each compute node. Image credit:

https://www.naddod.com/blog/unveiling-the-evolution-of-nvlink
< 3
National
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Compute Node CPU

Overview:
@ Intel(R) Xeon(R) Platinum 8480C
@ 2TB Memory
@ 112 physical cores (3.8 GHz max, 2.0

Dr Malik M Barakthullah (Fujitsu)

GHz base)
224 hardware threads
2 NUMA nodes

2 threads per core

2 sockets (56 cores per socket)

Sapphire Rapids-SP architecture

Caches:
e L1d: 5.3 MiB (112 instances)
e L1i: 3.5 MiB (112 instances)
o L2: 224 MiB (112 instances)
e L3: 210 MiB (2 instances)
o L1 & L2 — per core
@ L3 — per socket

A CPU in one socket:

o | oo w | oo
§ s
Memory Y
= e S
3 :
§ 5o oo
iz i
3 £33 zF
§ £5 i5 g
3 H
" »
3 00 o 3
3 2 2 3
L. it |
¥ gﬁ 35
i i
H
3 Memory Memory 3
Controller Controller
J e e

(CHA & LLC - Caches, UPI — Interconnect for
sockets)

The output from " hwloc-info”

1 Machine (type #1)
2 NUMANode (type #2)
2 Package (type #3)
2 L3Cache (type #4)
112 L2Cache (type #4)
112 LidCache (type #4)

112 L1iCache (type #4)
112 Core (type #5)

224 PU (type #6)

88 Bridge (type #9)

38 PCI Device (type #10)

55 05 Device (type #11)
maliknga2ap-dgx010 FU]'TSU .5 .
Nsccl obercomputing

Centre
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Compute Node GPU

Overview:
@ NVIDIA H100 80GB (HBM3)
8 GPU'’s per node
80 GB VRAM
132 SM's

128 CUDA 32 bit cores per SM (or 64
CUDA 64 bit cores)

16,896 cores per GPU
4 warp schedulers, 64 warps/SM

maximum 2048 threads per SM
Compute Capability 9.0

Caches:

o L1 + shared memory 256 KB
@ L2 Cache 50MB

@ Clock frequency: 1.5-1.8 GHz

Tensor core:

A100 FP16 H100 FP16

@ Specialized cores for matrix multiplication
and accumulation

@ Useful in Deep Learning

@ 3 times more through put than A100 in
FP16

I ©
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Enroot Containers
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Introduction and Configuration

Introduction:

Dr Malik M Barakthullah (Fujitsu)

Enroot gives an isolated filesystem
and environment variables for the
applications.

Similar to " chroot” command of
Linux, but Enroot comes with ability
to import and export containers.

It has builtin GPU and Infiniband
support through hooks and libraries.

Mounts the user’'s home directory,
(and hence scratch directory too).

Cgroups of the host are transparent
inside the container, enabling
scheduler to control the resources.

Enables unprivileged users (non-root
accounts) to install their packages as
part of the container, and distribute

the image.

Configuration in ASPIRE 2A+:

ENROOT_RUNTIME_PATH /raid/local/containers/enroot-runt ime.
/raid/local/containers/enroot-cache/'
/raid/local/containers/enroot-data/ PBS_J0BID

I -noD -noF no-duplicates

${HOME}/.config/enroot

ENROOT_MAX_CONNECTIONS

@ It shows that the enroot is mounted on
" /raid/local/containers”

@ The scheduler has a hook that creates
mount points under the job-id.

@ These folders with job-ids as names will be
deleted by the scheduler after the job.

@ Configured by default to mount $HOME
(hence $HOME /scratch too).

FUjiTsu 8
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Importing an Enroot Image

Importing

The common strategy to build an image is to start from a base-image that could be to import a
docker image from NVIDIA NGC Catalog: https://catalog.ngc.nvidia.com/.

@ Get the URI:

e > On a browser visit https://catalog.ngc.nvidia.com/

> Go to " containers”

> On the search field enter the package name, for example, PyTorch.

> Click the PyTorch link followed by "tags”

> Copy the link of the image. For example, nvcr.io/nvidia/pytorch:24.12-py3.

@ Get the command prompt: Use the login node if there not going to be heavy compilation
or installation, else get a compute node by submitting an interactive job through gsub -I.

@ Execute: "enroot import docker://nvcr.io#nvidia/pytorch:24.12-py3". Note the
change of a " /" to "#".

© g
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Importing an Enroot Image and Creating the Container

This gives the image as squashfile as shown below:
malikm@a2ap-login®2:~/images$ enroot import docker://nvcr.io#nvidia/pyto

Querying registry for permission grant

Authenticating with user: <anonymous>

Authentication succeeded

Fetching image manifest list

Fetching image manifest

Found all layers in cache

Extracting image layers...

:0=0s de44b265507ae44b212defcb50694d666136b35c1090d9709068bc861bb2d64

[INFO] Converting whiteouts...

:0=0s de44b265507ae44b212defch50694d666f136b35¢ 1090d9709068bc861bb2d64

[INFO] Creating squashfs filesystem...

Parallel mksquashfs: Using 96 processors

Creating 4.0 filesystem on /scratch/users/adm/sup/malikm/images/nvidia+pytorch+24.12-py3.sgsh, block size 131072.
[

] 351997/351997 100%
Creating the container

@ Get a compute node by submitting an interactive job.

@ Then, the container can be created from the squash file using the following synopsis:

enroot create --name mycontainer pytorch:24.12-py3.sqgsh”.
2 tional
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Creating and Starting the Enroot Container

This gives the image as squashfile as shown below:

malikm@azap-dgxowws enroot create --name mycontainer ~/images/nvidia+pytorch+24.12-py3.sqsh
[INFO] Extracting squashfs filesystem...

Parallel unsquashfs: Using 224 processors

214559 1inodes (353876 blocks) to write

] 353876/353876 100%

The command "enroot list” will show "mycontainer” as its result.

Starting the container as a root with write permission

Execute "enroot start --root --rw mycontainer”

1

@ The options " --mount folder/path/in/host:folder/path/in/container” can be used
to mount any other folders.

@ The options "--env VAR_NAME=VALUE" can be used to export an environment variable,
"VAR_NAME" with value, "VALUE".

Execution of "enroot start --root --rw mycontainer” results in the command prompt

inside the container as in: BN RIICICHANTO R |

Now we are nearly all set for installation in the system directories of the container&) .
FUJITSU
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Proxy Setting and Installation Using APT in Container

Set the following proxies when you are in the command prompt of the container:
export no_proxy=localhost,127.0.0.1,10.104.0.0/21

export https_proxy=http://10.104.4.124:10104

export http_proxy=http://10.104.4.124:10104

Now let us proceed to install a game, "rolldice”.
@ Execute:

apt update && apt upgrade
apt install rolldice
/usr/games/rolldice 3d6

@ This gives (a random number from 3 to 24) during my each run as follows:
root@a2ap-dgx040:/workspace# /usr/games/rolldice 3d6
11

root@a2ap-dgx040:/workspace# /usr/games/rolldice 3d6
10

root@a2ap-dgx040: /workspace# [J
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Upgrading PIP and Installing a Python Package

Executing python -m pip install --upgrade pip gives:

Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: pip in /usr/local/lib/python3.12/dist-packages (24.3.1)
Collecting pip
Downloading pip-25.0.1-py3-none-any.whl.metadata (3.7 kB)
Downloading pip-25.0.1-py3-none-any.whl (1.8 MB)

eta 0:00:00
Installing collected packages: pip
Attempting uninstall: pip
Found existing installat : pip 24.3.1
Uninstalling pip-24.3.1:
Successfully uninstalled pip-24.3.1
Successfully installed pip-25.0.1

Executing pip install geopandas installs the package GeoPandas:

Downloadlng geopandas 1.0.1-py3-none-any.whl (323 kB)
Downloading pyogrio-0.10.0-cp312-cp312-manylinux_2_28_x86_64.whl (24.0 MB)
26.1 MB/s e 0:00:00
Downloading pyproj-3.7.1-cp312-cp312-manylinux_2_17_: XBG 64 manylinux2014_x86_64.whl (9.6 MB)

9 MB/s eta 0:00:00

Downloading shapely-2.1.0-cp312-cp312-manylinux_2_17_: x86 64.manylinux2014_x86_64.whl (3.1 MB)
9 MB/s eta 0:00:00

Installing collected packages: shapely, pyproj, pyogrio, geopandas

Successfully installed geopandas-1.0.1 pyogrio-0.10.0 pyproj-3.7.1 shapely-2.1.0

FUjiTsu 8
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Exporting the Container as a Squash Filesystem

@ To export the container after installation, first exit the container, by executing
exit. The will take us back to the command prompt of the host compute node.

@ The command enroot list will show the container, which is mycontainer in our
case.

@ Executing enroot export -o /images/test.sqgsh mycontainer gives:

nal knga2ap-dgx040:~§ enroot List

2ap-dgx040:~$ enroot export -o ~/images/test.sqsh mycontainer
ng squashfs filesystem...

Parallel mksquashfs: Using 224 processors
Creating 4.0 filesystem on /scratch/users/adm/sup/malikn/images/test.sqsh, block size 131072.

/] 353788/353788 100%

For the material on how to use Enroot for running commands in batch jobs, please see
the slides of Introductory workshop.

FUjiTsu 8
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Py Torch Distributed Data Parallel
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Introduction

@ DDP class from the module torch-Distributed is used for parallelizing training in
multiple GPU's.

@ Uses multiple processes like MPI. Recommended: One process for each GPU.

@ Each process does deep-learning using a replica of the model: Hence, Data
Parallelism via Single Program Multiple Data (SPMD) paradigm.

@ The model should be small-enough to fit into each single GPU.

@ Uses collective-communication functions from TorcheDistributed module, which is
generally chosen to be NCCL in the backend.

@ The collective communications are used during back-propagation to synchronize
gradient across all processes.

@ Faster than TorcheDataparallel, since the latter uses only threads, and thus suffers
from locking to avoid race-condition.

@ Pytorch DDP is launched using "torchrun”, which spans the specified number of
processes.
Q
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Basics of Deep Learning (DL)

input
layer

output
layer
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@ A DL model could have
100's of layers.

@ Input layer data are features
of each sample.

@ samples can be bunched
together as batches.

@ The output layer predicts.
@ Loss = A positive norm of
(prediction - targe label).

Image credit: https://tikz.net/neural_networks/
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@ The W's and b’s are the learnable parameters.
@ The o() is the activation function or " switch”.
@ Various paradigms: MLP, CNN, RNN, & GNN.

@ Problems: Classification, regression, segmentation
& generation © o e
g FUJITSU s:::Z:‘;m.,W
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Basics of Deep Learning (DL) (continued - - )

Different types of layers:

1D,2D,3D convolution and
transposed convolution layers

Pooling (eg, maxpool,
maxunpool,average in 1-3D)
and upsampling and padding
(eg. zero padding, reflection)
layers.

Normalization (eg. batchnorm)
layers.

Activation functions (eg.
sigmoid, tanh, ReLU)

Recurrent layers (eg. LSTM,
GRU)

@ Linear and dropout layer

@ various loss functions (e.g.

Dr Malik M Barakthullah (Fujitsu)

MAE, MSE, cross entropy)

Advanced Workshop on Parallel Programming Models

Applications:
@ MLP: Suitable for table data: forecasting,

estimation (interpolation in

multi-dimension), classification, pattern
recognition. [Reference:

http://www.Ix.it.pt/ Ibalmeida/papers/AlmeidaHNC.pdf]

CNN:Image classification, segmentation,
video and audio analysis, time series analysis
RNN: Time series prediction, natural
language processing. [Reference: (latest review

article)
https://www.sciencedirect.com/science/article/

pii/S1319157824001575].

GNN: Analysis of connected data, network
analysis such as social networks, urban
planning, fraud detection, business
forecasting, etc. [Reference:
https://arxiv.org/pdf/2504.07645 and references

thereof.].
Fufirsu [l

April 2025 19 /106




End-to-end Machine Learning Pipeline

Dataset » Dataloader —0 3
Start the Backprogation < Compute Loss D Prediction
Find the gradients starting Evolve the learnable Loop this pipeline over all
from the layers closest to the =) parameters based onthe =3 batches and epochs until
output layer gradients convergence

@ Backpropagation (termed as backward pass) in PyTorch is the crucial step that
determines how much the learnable parameters changed.
@ Typically training is based on a subset of dataset, training set.
@ Epochs should be rightly set to avoid over-fitting. © )
Fufirsu [
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PyTorch DDP and NCCL

@ NCCL offers both point-to-point and
collective communication functions.

Python API @ PyTorch DDP uses all-reduce and
broadcast functions of NCCL.

Gradient Reduction @ Broadcast is used for state-dictionary in

rank 0.

DistributedDataParallel

Collective Communication @ All-reduce is used for synchronizing
gradients during back propagation

WELL @ The reduction operation is mean on the

gradients in aII GPU's
IIH H All-reduce
H Broadcast

(mo()
Fujirsy [t
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Pytorch DDP can use NCCL,
Gloo or MPI for communication. I .

In ASPIRE 2A+, NCCL library is
available, and recommended by
PyTorch.




PyTorch DDP Design: Step-by-Step Operation Method

DDP uses Pytorch library c10d.
c10d could use NCCL backend.

c10d forms the process group.

DDP version of the model is created
as instance by passing the model as
an argument to the DDP class's
constructor.

@ Process ranked " 0" broadcasts the
"state_dict()” of the model at each
step of every epoch.

@ Forward pass in DDP model is same
as that of the original model

@ During back propagation, the
gradients are bucketed before
reduction by mean across all GPU’s.
This is to minimize the number of
communications.

Dr Malik M Barakthullah (Fujitsu)
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import torch
import torch.distributed as dist

import torch.multiprocessing as mp

import torch.nn as nn

import torch.optim as optim

import os

from torch.nn.parallel import DistributedDataParallel as DDP

DL 1
DDP(model device_ids= [rank])
function and op
loss £n = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.0601)

dp_nodel (torch.randn (26, 10).to(zank))
toreh. randn(20, 10).to(zank)

, labels) .backward()

optimizer.step()

def main():
world_size = 2
mp. spawn (example,
args=(world_size,),
nprocs=world_size,
join=True)

["MASTER_ADD
os.environ["MASTER_PORT"
main()

FUjiTsu 8
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Torchrun: An Utility to Launch PyTorch DDP Workload

The previous example had used the Python
module Multiprocessing which spawned the
processes. Now we will see Torchrun.

Advantages of Torchrun:
@ Ranks are allocated automatically.

@ If processes in a node fail, the
processes in other nodes can keep
running without killing the whole job.
This is when the "elasticity” property
is enabled by giving minimum and
maximum for the number of nodes.
An useful feature, since the budget to
run in GPU is expensive, and one
can't afford to waste it.

@ when the node becomes available
again, the exited processes are
automatically restarted.

Dr Malik M Barakthullah (Fujitsu)

Common usage:

torchrun
--nnode s=$NUM_NODES
--nproc -pex-node=$NUM_TRAINERS
--max-restarts=3
--rdzv-1id=$J0B_ID
--rdzv-backend=c10d
--1dzv-endpoint=$HOST_NODE_ADDR
YOUR_TRAINING_SCRIPT.py (--argl ... train script args...)

This command is passed through job
script in ASPIRE 2A+ unless run in
interactive mode.

—max-restarts=3 means that the
exited groups could be started
maximum three times.

—nprocs-per-node is set to the
number of GPU'’s asked for in the job
script per node.

—nnodes=2, for example, means that
the 2 nodes are going to be used.

© g
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Torchrun: DDP Launcher (continued- - -)

In the context of environment in ASPIRE
2A+, the following options apply.

@ —rdzv-backend=c10d means that
c10d has been chosen as the
process-group former.

@ —rdzv-id=%$PBS_JOBID. This gives an
id for the process group that takes
part in the cooperation.

@ —rdzv-endpoint=""%(head -n 1
$PBS_NODEFILE):29555" The
rendezvous end-point decides where
to base the backend, c10d. Here it
has been chosen as the hostname
appearing in the first line of the
node-file generated by the scheduler
for the job. The number following the
""" refers to the port number of
choice for communication.

Dr Malik M Barakthullah (Fujitsu)
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This is usually done as shown in the figure

below.
export MASTER_ADDR= ad -
export MASTER PORT=29500

torchrun \
--nnodes=2 \

--nproc_per_node=8 \

--rdzv_1d=$PBS_JOBID \

--rdzv_backend=c10d
--rdzv_endpoint="$MASTER_ADDR:$MASTER_PORT" \

mnist ddp nodownload.py --epochs=500

The following environment variables will be
made available by torchrun for the pro-
grams to access.

@ RANK Global rank.

@ LOCAL_RANK local rank within the
node

@ WORLD_SIZE total number of
processes in the group.

@ LOCAL_WORLD_SIZE number

processes in the node.
)
FUJITSU

April 2025

24/106



Torchrun: DDP Launcher (continued- - -)

For an example, the usage of the environment variable LOCAL_RANK:

local_rank = int(os.environ["LOCAL RANK"1)

model = torch.nn.parallel.DistributedDataParallel(model,

Best practices

@ Batch size could be highest possible
for making use of a larger SM
occupancy and utilization

@ Dataloader workers: This number can
be sufficiently larger for minimizing
the overhead of loading.

@ Use prefetch for efficient loading.

@ NCCL backend is always preferable
for c10d process group’s
communications.

@ Use Torchrun and choose c10d as the
backend for rendezvous.

Dr Malik M Barakthullah (Fujitsu)

device_ids=[local_rank],
output_device=local_rank)

@ Never kill using gdel command. Let

the jobs finish by itself. If you wish to
terminate the job by your will, make
provisions for it in the code to
periodically check for an existence of
a file, and exit (after calling
dist.destroy_process_group()) when it
exists. Such a file can be created by
you by touch command when you
wish to terminate. Our experience
suggest that NCCL communications
reach a deadlock, causing the
scheduler to get the node offline.

S ©
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PyTorch DDP Exercise: MNIST Image Classification

Download a version of CNN model for

image classification from https://yangkky. class ConvNet(nn.Module):
github.io/2019/07/08/distributed-pytorch- def Zz::EE:\vNe{ "“’”—il“izzwz;
tutorial.html (shown on the right) and run e
it on 8 GPU's nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
@ Increase the batchsize, and compare nn.ReLU(), ) )
nn.MaxPool2d(kernel_size=2, stride=2))
the loss at the end of 40 epochs e = o SR
Anal he GPU nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
@ Analyze the resource output nn.BatchNorm2d(32),
" v nn.ReLU(),
from the command gstat -xf" in nn.MaxPool2d(kernel_size=2, stride=2))
both cases. fc = nn.Linear(7¥7%32, num_classes)
@ Increase the learn rate and observe def forward(s<1f, x):
. out = _layeri(x)
the change in the loss at the end of it o o T rRES)
40 epochs. out = out.reshape(out.size(9), -1)
out = fc(out)
@ How do you know that you are not return out

over-fitting?

(Use the case folder provided for this exercise. The curves of training and test
losses could be obtained on login nodes by executing " %run plot.py” while inside

IPython.) I
Fufirsu [
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PyTorch DDP Exercise: MNIST with a Different Model

Change the model to the one shown below and plot the performance on the test set. compare it
with the loss curves for the previous model. (Use the provided codes.)

— train
— test
025
, nn.BatchNorn2d(32), nn.ReLU(),
0, 020
), nn.ReLU(),
, nn.BatchNorn2d(64), nn.ReLU(), "
. . BatchNor 0, g o1s
ide=2), nn.BatchNorm2d(64), fn.ReLU(), 4
S
, 128), nn.RelU(), nn.BatchNormid(128), nn.Dropout(p=0.4),
24, 136), m.Relll), on Batctbornis n.Dropout(p: 010
d(self, x):
selt.blocki(x) 005
ut
0.00
0 10 20 30 40 50

Epochs

Experiment by changing the batch size and by diminishing learning-rate over epochs.

Q
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PyTorch DDP: Closing Remarks

Some more best practices:

@ Always address the GPU using the LOCAL_RANK environment variable. For example, as in
local _rank=int (os.environ["LOCAL_RANK"])
device = torch.device(f"cuda:{local_rank}")

@ Always use DistributedSampler class as in

from torch.utils.data.distributed import DistributedSampler
sampler = DistributedSampler(dataset, shuffle=True)
dataloader = Dataloader(dataset, batch_size=100, sampler=sampler

If the model is too big for GPU memory:

@ The DDP is not ideal for this. PyTorch offers another distributed-execution framework for
such large models: Fully Sharded Data Parallel(FSDP).

@ In this frame work, the each GPU takes part in a serial pipeline, where each operates on
several different layers of the model.

@ Less efficient than DDP when the whole model can be fit into each GPU.
@ For an example of using this in an MNIST classification task, see:
https://pytorch.org/tutorials/intermediate/FSDP _tutorial.html

Further learning: Follow another version of MNIST classification using DDP in this link;
https://github.com/yghu/profiler-workshop/blob/main /mnist_ddp.py FUﬁTSU "’“"““‘
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Transformers, LLM and FSDP
Parallelization

© © .
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LLM'’s: Short Introduction

Introduction

@ LLM'’s have revolutionized the world of
Al resulting in a new paradigm of
genrative Al.

@ Tasks: Quesion answering, sentiment
analysis, language translations, and
sentence completion.

@ Made possible due to advances in GPU
performance.

Model characteristics
@ Mostly encoder-decoder type.

@ Sequence to scalar model applied
recursively to generate a sequence.

Dr Malik M Barakthullah (Fujitsu)

Since 2017, the LLM'’s are based on
Transformers instead of pure RNN
based blocks that contains LSTM or
GRU layers.

The models are pre-trained in
self-supervised manner on large
quantity of texts using the methods
such as masked-token prediction and
next-sentence prediction).

They are then further trained slightly in
a supervised manner for domain-specific
tasks, and for alignment with socially
accepted norms, ethics and beliefs.

The model sizes varies from few billions
to the order of a trillion learnable
parameters.

© g
FUJITSU
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Various LLM's and Their Sizes

LLM # of Parameters | Depth L | Width d | # of Heads
(Q/KV)
GPT-1 [Radford et al., 2018] 0.117B 12 768 12/12
GPT-2 [Radford et al., 2019] 1.5B 48 1,600 25125
GPT-3 [Brown et al., 2020] 175B 96 | 12,288 96/96
7B 32 4,096 32/32
LLaMA2 [Touvron et al., 2023b] 13B 40 5,120 40/40
70B 80 8,192 64/64
8B 32 4,096 32/8
LLaMA3/3.1 [Dubey et al., 2024] 70B 80 8,192 64/8
405B 126 | 16,384 128/8
2B 26 2,304 8/4
Gemma?2 [Team et al., 2024] 9B 42 3,584 16/8
37B 46 4,608 32/16
0.5B 24 896 14/2
Qwen2.5 [Yang et al., 2024] 7B 28 3,584 28/4
72B 80 8,192 64/8
DeepSeek-V3 [Liu et al., 2024a] 671B 61 7,168 128/128
7B 32 4,544 7171
Falcon [Penedo et al., 2023] 40B 60 8,192 128/128
180B 80 | 14,848 232/232
Mistral [Jiang et al., 2023a] 7B 32 4,096 32/32
fuit
]ITSU NS CC i
Table credit: https://arxiv.org/pdf/2501.09223
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Transformer Model

Feed-Forward
Network

L R A — .
“Layers” | <

Norm

Positional
Encoding

Source Sequence

Dr Malik M Barakthullah

Predictions

Multi-Headed
Cross-Attention

Shifted
Target Sequence
(Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 32 /106

Positional
Encoding

A path-breaking framework (" Attention is all
you need” Vaswani et al. (2017))

Full model comprises encoder and decoder.

The encoder contains token and position
embeddings and a series of transformer blocks.

Each transformer block contains normalization,
multiheaded attention and feed-forward layers.

Decoder uses the last time-step’s output as
input.

Then subsequently undergoes self attention
with causality enabled. (masked self attention)

The encoder output is used for cross attention.
skip connections prevent zero-gradient issue.

After series of the transformer blocks, the next
token in the sequence is predicted by a softmax
activation. © )
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H100 GPU: Transformer Engine with FP8 Support

@ H100 provides support to Transformer Engine (TE) and

FP8 arithmetic. Transformer layer modules:

Transformer layer

@ TE module provides different types of neural-network [ ] gl 1HH
layers capable with FP8. :

@ Useful for Generative-Al tasks that use
transformer-architecture blocks (containing multi-headed
attention and feed-forward networks).

Example:

—_— — High precision  ——b Auiliary data

malikm@a2ap-dgx009:/workspace$ ipython

Python 3.12.3 lmaln Nov 6 2024, 18:32:19) [GCC 13.2.0]

Type 'copyright', 'credits' or 'license' for more information FP8 support;
IPython 8.30.0 -- An enhanced Interactive Python. Type ' for help.

gRange  Precision
Forponent

rm ommo! recipe

- 2
in, features, out features, hidden_size = B Fraz M
model = te.Linear(in_features, out_features, bias=/ ) e
inp orch.randn(hidden_size, in_features, device="cuda") BF18 RILITITIY
fp8_recipe = recipe.DelayedScaling(margin=0, fp8_format=recipe.Format.E4M3) L i
te.fp8_autocast(enabled=1 .-, fp8_recipe=Fpd_recipe): s e
out = model(inp) —
loss = out.sum() Allocate 1 bit to either Support for multiple accumulator
range or precision and output types

loss.backward( )

out
tensor([-1.2397, -0.6113, -1.1178], device='cuda:0', grad_fn=<SliceBackward>)

Q
FUJITSU
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LLM: Exercise on Loading a Model, Qwen3-32B-FP8, and
Running Inference

We will load a thinking-model that uses the H100 GPU card'’s specialty to use FP8 data-type,
and run inference. One such model is Qwen3-32B-FP8, which is small enough to load into a
single GPU. This model is known to be a highest performer for code generation from prompts.
Step 1: Create a directory under your scratch folder, and change to that directory as below:
mkdir -p /scratch/11lm/Qwen332BFP8

cd /scratch/1lm/

Step 2: Install Hugging Face hub’s command-line interface using the following command, and

download the model:

pip install -U "huggingface hub[cli]"
huggingface-cli download --local-dir ./Qwen332BFP8 Qwen/Qwen3-32B-FP8

Wait for the model to be saved in your directory.
- CI ...
FUIITSU it
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LLM: Exercise on Loading a Model, Qwen3-32B-FP8, and
Running Inference (Continues - - -)

Step 3: Submit a request for an interactive job with two GPU’s. Two GPU'’s are not needed for
this exercise, but needed later when running FSDP 2 (coverered in later slides): gqsub -I -1
select=1:ngpus=2:mem=400gb -1 walltime=3:00:00 -P <project id>

The next exercise on FSDP 2 requires latest PyTorch version, so we will use th latest version so
that we can reuse it later.

Step 4: Use "enroot import” to download a Docker image of latest PyTorch from NGC website
and save it as a squash-file system: enroot import docker://nvcr.io#nvidia/pytorch:25.04-py3

Step 5: Create and start container from the squash-file as below:

mal ikn@a2ap-dgx030:~$ enroot create --name pytorch25_04 ~/images/nvidia+pytorch+25.04-py3.sqsh
[INFO] Extracting squashfs filesystem...

Parallel unsquashfs: Using 28 processors
232571 inodes (395344 blocks) to write

[ -1 395344/395344 100%

created 230651 files

1 ikn@a2ap-dgx030:~ <O 3 .
e tkma2ap - x030:~5 FUJITSU N et
Chire
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LLM: Exercise on Loading a Model and Running Inference
(Continues - - )

Step 6: start the container shown in the picture.
malikm@a2ap-dgx030:~$ enroot start pytorch25_04

NVIDIA Release 25.04 (build 159049541)

PyTorch Version 2.7.0a0+79aal74

Container image Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

2014-2024 Facebook Inc.

2011-2014 Idiap Research Institute (Ronan Collobert)

2012-2014 Deepmind Technologies  (Koray Kavukcuoglu)

2011-2012 NEC Laboratories America (Koray Kavukcuoglu)

2011-2013 NYU (Clement Farabet)

2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)

(]
(]
(c)
(c)
(c)
()]
(c)
(c)
(c)
(]
(c

2006

Idiap Research Institute (Samy Bengio)

2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)

2015
2015

Google Inc.
Yangging Jia

) 2013-2016 The Caffe contributors
ALL rights reserved.

Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved.

GOVERNING TERMS: The software and materlals are governed by the NVIDIA Software License Agreement

(found at htt s

(found at htt

‘www.nvidia.com/en- reements/enterprise-software/nvidia-software-license-agreement,

NOTE: CUDA Forward Compatibility mode ENABLED.
Using CUDA 12.9 driver version 575.51.02 with kernel driver version 550.90.07.
docs.nvidia.com/deploy/cuda-compatibilit: for details.

See https:

malikm@a2ap-dgx030: /workspaces$ I

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models
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LLM: Exercise on Loading a Model and Running Inference
(Continues - - )

Step 7: Set proxies to get internet connection inside the container:

export no_proxy=localhost,127.0.0.1,10.104.0.0/21
export https_proxy=http://10.104.4.124:10104
export http_proxy=http://10.104.4.124:10104

Step 8: Install transformers and accelerate: First, pip install transformers. Then, since the
model uses pipeline from transformers library with automatics GPU mapping, we need to install
the Python package accelerate: pip install accelerate. This will install accelerate as
shown below:

Using cached accelerate-1.7.0-py3-none-any.whl (362 kB)
Using cached huggingface_hub-0.32.0-py3-none-any.whl (509 kB)
Using cached hf_xet-1.1.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB)

Installing collected packages: hf-xet, huggingface-hub, accelerate
Successfully installed accelerate-1.7.0 hf-xet-1.1.2 huggingface-hub-0.32.0
malikm@a2ap-dgx024:/workspace$

Step 9: Since we would like to rn inference by chatting,
b . . . s o M
go into interactive Python: ipython. FUJITSU ?Eg::;e’:;mm

c
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LLM: Exercise on Loading a Model and Running Inference
(Continues - - )

Step 10: In Ipython, given the following sequence of commands to see the response from
Qwen3-32B-FP8:

from transformers import pipeline
model name or_path = "/home/users/adm/sup/malikm/scratch/11m/Qwen332BFP8"

generator = pipeline( "text-generation", model name_or_path,
torch_dtype="auto", device_map="auto")

messages = [ "role": 'user", "content": "Write a short bash script
to greet the participants of ASPIRE 2A+ workshop.", ]

messages = generator (messages, max _new_tokens=32768) [0] ["generated_text"]

messages.append("role": '"user", "content": "Write the Python version
of the same")

messages[-1] [’ content’]

This outputs shown in the next two slides. FUﬁTSU Nago-m
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LLM: Exercise on Loading a Model and Running inference
(Continues - - )

malikm@a2ap-dgx024:/workspace$ ipython

Python 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0]

Type 'copyright ‘credits' or 'license' for more information
IPython 9.0.2 -- An enhanced Interactive Python. Type '?' for help.
Tip: You can find how to type a unicode symbol by back completing it

1 t pipeline
2 model_name_or_path = "/home/users/adm/sup/malikm/scratch/1lm/Qwen332
generator = pipeline( model name or patl dtyp

Loading checkpoint shards: 10
Device set to use cuda:0

device map="auto")
| 7/7 [00:56<00:00, 8.04s/it]

4 messages = [ {"role" r*, "content"

ite a short bash script to greet the participants of Aspire2A+ workshop

messages = generator(messages, max_new_tokens=. ["generated_text"]

FUjiTsu 8
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LLM: Exercise on loading a model and running inference

(Continues - - )

messages[-1]['content']

‘<think>\nOkay, I need to write a short bash script to greet the participants of the Aspire2A+ workshop. Let me think
about how to approach this.\n\nFirst, a bash script starts with the shebang line, which is #!/bin/bash. That\'s straightforwar
d. Then, I want to display a greeting message. The message should be welcoming, mention the workshop name, maybe add some emo
is for a friendly touch. Let me check if the user wants any specific details, but the query just says to greet them, so probab
1y a simple message.\n\nI can use the echo command to print the message. Let me think about the structure. Maybe start with a
welcome, then mention the workshop, and perhaps add some encouragement. Also, maybe include some ASCII art or symbols to make
it visually appealing. For example, using stars or a rocket emoji since it\'s about aspiration.\n\nWait, the workshop is calle
d Aspire2A+, so maybe include that in the message. Also, maybe use some colors with ANSI escape codes to make it colorful. But

maybe keep it simple if the user doesn\'t want complexity. Let me decide to add colors to make it more engaging.\n\nSo, the s
teps are: write the shebang line, then use echo with some colored text. Let me recall the ANSI color codes. For example, \\033
[1;32m for green, \\033[@m to reset. Maybe a header in green, then a message in yellow.\n\nAlso, maybe add a friendly closing

Let me draft the message:\n\n"Welcome to Aspire2A+ Workshop!"\n"Let\'s dive into the world of possibilities and achieve great
things together! & "\n\nThen, maybe add a line for participants to enjoy the session. Also, perhaps use figlet for a larger t
itle, but that requires the figlet package which may not be installed everywhere. Since the script should be self-contained, m
aybe avoid that and just use echo.\n\nPutting it all together:\n\n#!/bin/bash\n\necho \\033[ 1;32mWelcome to the Aspire2A+
Workshop!\\033[0m"\necho -e "\\033[1;33mWe\'re excited to have you here!\\033[@m"\necho “Let\'s dive into the world of possibi
lities and achieve great things together! "\necho "Enjoy the session, and feel free to ask questions whenever you need!"\n\n
The -e option in echo enables interpretation of backslash escapes. The \\033 codes are for color. The first line is green, the
second yellow. Then plain text with emoji.\n\nWait, maybe add another line about collaboration or learning. Maybe also includ
e a sparkle emoji or something. Let me check if the emojis are supported, but assuming the environment supports them, it looks
nice. The rocket emoji is a good fit for aspiration.\n\nI think that\'s a good start. Let me test the script in my mind. When
run, it should display colored text and the emoji. Should I add a pause or anything else? Probably not, since it\'s a short g
reeting. Maybe add a sleep command if they want it to stay, but the user didn\'t mention that. Probably just output the messag
e.\n\nSo the final scert is as above. Let me write properly thh Line breaks and correct syntax. \n</tthk;\n\n

t gree n . s+Features+*\n\n- **Colorfu
e (i AR CHEERD Gt reen 0 2m') for the welcome message.\n - Yellow ( m') for the se
cond line.\n- **Emoji supportx ( ) for a modern and engaging feel.\n- **Simple and self-contained** — no external tools re
quired.\n\nThis script is perfect for running at the start of a session to create a warm and enthusiastic atmosphere.'

o)
FUJITSU
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SGLang: Introduction and Installation

Introduction:
@ SGlang is a tool to serve an LLM. It is also useful to run benchmarks without serving the
model.
@ We will use here for benchmarking Qwen3-32B-FP8 model’s latency and throughput.

@ This model is already with FP8 datatype. But SGLang model can be used for quantization
for FP8 eventhough the model does not explicitly use it.

Installation:
@ Start the latest PyTorch container as before.

@ UV package in a virtual environment will help accelerating Pip based installations. Issue
the following sequence of commands:
pip install --upgrade pip
pip install uv
pip install transformers
pip install accelerate

uv venv
source .venv/bin/activate
uv pip install "sglang[all]>=0.4.6.post5" © )
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SGLang: Benchmarking an LLM Model

Enter the following command to benchmark a single batch’s latency and
throughput on two GPU's:

python -m sglang.bench_one_batch --model-path
/scratch/11m/Qwen332BFP8 --tokenizer-path
/scratch/11m/Qwen332BFP8 --batch 32 --input-len 256 --output-len
32 --tp-size 2

25131.31 token/s
throughput: 2389.94 token/s
throughput: 2442.25 token/s
Decode 2. ize: : 0. throughput: 2459.55 token/s

Decode 3. ize: latency: 0.01297 s, throughput: 2467.85 token/s
Decode 4. 8 latency: 0.01292 s, throughput: 2476.94 token/s
Decode. latency: 0.01289 s, median throughput: 2483.27 token/s
Total. latency: 0.726 s, throughput: 12689.35 token/s

(workspace) malikm@a2ap-dgx031:~$

O © .
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SGLang: Benchmarking an LLM Model (Continued - - -)

Enter the following command to benchmark the offline throughput on two GPU's:

python -m sglang.bench offline_throughput --model-path
/scratch/11m/Qwen332BFP8 --tokenizer-path
/scratch/11m/Qwen332BFP8 --num-prompts 10 --tp-size 2

= 0ffline Throughput Benchmark Result
Backend: engine
Successful requests: 10
Benchmark duration (s): 9.12
Total input tokens: 1997
Total generated tokens: 2798

Last generation throughput (tok/s): 79.78
Request throughput (req/s): 1.10

Input token throughput (tok/s): 218.86
Output token throughput (tok/s): 306.64
Total token throughput (tok/s 525.50

FUjiTsu
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Introduction to FSDP

FSDP class from the module torch-Distributed is another tool for process based
parallelization on multiple GPU's besides DDP.

Unlike DDP, the replicas of the model do not reside in each process or GPU in this
method.

Each GPU has a shard of the model.
Suitable when the model is too big to fit into a GPU.
Like DDP, it too uses collective-communication functions like NCCL.

Like DDP, FSDP too is launched using "torchrun”, which spans the specified
number of processes.

Introductory materials:
https://docs.pytorch.org/tutorials/intermediate/FSDP _tutorial.html
https://docs.pytorch.org/docs/stable/distributed.fsdp.fully_shard.html
https://docs.pytorch.org/docs/stable/distributed.tensor.html
https://github.com /pytorch /torchtitan /blob/main/docs/fsdp.md
https://github.com/pytorch/examples/tree/main/distributed /FSDP2

https://arxiv.org/abs/2304.11277 Ut ,
https://www.youtube.com/watch?v=By_O0k102PY UJITSU - e e
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FSDP Sharding

Sharding Group
Local Shard
Padding

(i] Ranki

Full Sharding
(F=16)

@ Sharding reduces memory footprint.
Increases communication.

Some layers can be chosen to not be
sharded if small in size. In this case the
layer gets replicated across the GPU'’s.

@ Sharding means communication
overhead.

@ All-gather and reduce-scatter are the
collective communications used.

Image credit: https://arxiv.org/abs/2304.11277
Dr Malik M Barakthullah (Fujitsu)
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FlatParameter

" Sharding Group
Replication Group
Local Shard

Rank i

Hybrid Sharding (F = 8)

Two methods: FSDP1 and FSDP2
FSDP1 may become deprecated.
FSDP2 uses DTensors (distributed)

No sharding policies in FSDP2: use "if"
conditions on the type of layers.
@ More on diff. between FSDP 1 and 2:

https://github.com/pytorch/torchtitan /blob/main/docs/fsdp.md

@ FSDP2 uses fully_shard() as the
constructor. © ®
Fujirsy [l
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FSDP: Sharding, Unsharding and Computation Overlap

FSDP Unit0 ... Forward Backward
layer0 synchronize
gradients
)
1 =] Exec gather full free peer
& hards
layer2 a layer?2 PN 2
ol QG L= .
&
tayers |
~
Layers 5
| . '
layer5 é free peer gather full
[ — shards params
| —
O All-Gather (AG)
Forward . Backward O Reduce-Scatter (RS)

CPU 01 0 22 E01Ho@

@ Forward Comp. (FWD)
Backward Comp. (BWD)
Parameter Free

— FSDP Unit i
GPU Comp. ) \ - ; NN 15
Stream j’ J e kwb FWD2[2| 'BWD2 2BWDO | BWRLUIBWRO
. ey L PR S
GPU C""‘"‘[ AGO ‘ AGL ‘ AG2 I AG2 } [ RS2 | AGl | RSl ‘ ‘ RSO ‘
Stream g
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FSDP is DDP
communications.

-+ more

All-gather makes it pos-
sible to make each shard
equivalent to the full
model momentarily for
the layer of active compu-
tation at a chosen time.

After computations in a
layer, it is resharded.

Communication between
processes overlap in time
with the computation in
them. See the figure on
left bottom. Image credit:
https://arxiv.org/abs/2304.11277
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FSDP 2: fully_shard()

fully_shard(module, *, mesh=None, reshard_after_forward=True, shard_placement_fnr=None,
mp_policy=MixedPrecisionPolicy(param_dtype=None, reduce_dtype=None, output_dtype=None,
cast_forward_inputs=True), offload_policy=0OffloadPolicy(), ignored_params=None)

@ Hybrid- and full-sharding: The " mesh”

@ Bottom-up sharding: If a module argument above in the constructor can
contains nested submodules, the be used to specify which rank should
fully_shard() should be applied to the contain shards, and which ranks should
inner-most submodules first, and then contain the replica of existing shards.
progressing to parent modules until the @ Mixed-precision policy: This argument
root (outer-most) module. in the constructor can modify the

@ prefetching: During the forward and data-types of parameters and gradients.
backward pass, the next-layers’ @ Offload policy: The default setting
parameters neted to be all-gathereq while " offload_policy=OffloadPolicy ()"
thg computation on current Iayer_ls disables CPU offloading.
going on. There are methods available offload_policy=CPUOffloadPolicy()
for specifying the number of layers. enables it. It uses CPU RAM as a swap

space for storing the sharded parameters
of inactive layers.
o C eccne
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FSDP: Example

As a demonstration, let us do an example available on PyTorch’s official tutorial.

Create and Start the latest PyTorch container on two GPU'’s through an interactive job as
we did earlier for running an inference on Qwen3-32B-FP8. But, make sure to start with
the environment variable CUDA_VISIBLE_DEVICES as in enroot start --env
CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE DEVICES pytorch25_04.

Change to scratch folder and download the examples from PyTorch’s Github page: git
clone https://github.com/pytorch /examples

Change to the directory ~ /scratch/examples/distributed /FSDP2.

Note the following in train.py:

o Customize the functions for pre-fetching
e bottom-top way of applying £sdp() on module layers and the model. (This
example does not use mesh to create replicated FSDP units. )
e The option for mixed precision allows the use of different precisions for
parameters (Bfloat 16 bit) and reduce operation (32 bit).
Run the workload using torchrun: torchrun --nproc_per_node 2 train.py
--mixed-precision --explicit-prefetch
The output is shown in the next slide FUﬁTSU Nﬂgg;‘gﬂ‘mwmq
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FSDP: Example (Continues - - -

malikm@a2ap-dgx026:~/scratch/examples/distributed/FSDP2$ torchrun --nproc_per_node 2 train.py --mixed-p
recision --explicit-prefetch
W0526 11:05:21.268000 3706374 torch/distributed/run.py:766]
W0526 11:05:21.268000 3706374 torch/distributed/run.py:766]
W0526 11:05:21.268000 3706374 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variabl
e for each process to be 1 in default, to avoid your system being overloaded, please further tune the v
ariable for optimal performance in your application as needed.
W0526 11:05:21.268000 3706374 torch/distributed/run.py:766]
FSDPTransformer(
(tok_embeddings): Embedding(1024, 16)
(pos_embeddings): Embedding(64, 16)
(dropout): Dropout(p=0, inplace=Fa
(layers): ModuleList(
(0-9): 10 x FSDPTransformerBlock
(attention_norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(attention): Attention(
(resid_dropout): Dropout(p=0, inplace=False)
(wq): Linear(in_features=16, out_features=16, bias=False)
(wk): Linear(in_feature out_features=16, bia alse)
(wv): Linear(in_features=16, out_features=16, bias=False)
(wo): Linear(in_features=16, out_features=16, bias=False)

(ffn_norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(feed_forward): FeedForward(
(wl): Linear(in_features=16, out_features=64, bias=True)
(gelu): GELU(approximat: none' )
(w2): Linear(1in_features=64, out_features=16, bilas=True)
(resid_dropout): Dropout(p=0, inplace=False)
)
)
) . N
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(output): Linear(in_features=16, out_features=1024, bias=False)

malikm@a2ap-dgx026:~/scratch/examples/distributed/FSDP2$ exit

The model printed from rank=0.
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FSDP: Closing Remarks

o If the model is small to fit into a GPU, use DDP. FSDP is inefficient for such
cases.

@ If Using multidimensional mesh in fully_shard(), note that the sharding
happens on ranks given by dim = 0 of the mesh array, and replicated on the
other dimension ranks correspondingly. If using this feature, allowing the
intranode ranks to have shards, and the ranks across the nodes to be
corresponding replicas would enhance performance. This is because, the
inter-node all-gather () communications are absent.

o CPU-offloading can greatly reduce the GPU memory footprint of the
workload, thought it will increase the H2D and D2H communications.
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Computations in GPU Using CUDA
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Introduction

Massive parallelization. High throughput calculations
More than 250,000 threads in H100. 138 SM's, each with 128 CUDA cores.
CUDA is an extension to C/C++ (by header file cuda_runtime.h and library).

CUDA gives a framework to define the functions that need to be executed in GPU.
These functions are called CUDA kernels

@ Memory management functions: allocation, movement between GPU and CPU, and
releasing the memory in GPU.

@ Provision of thread and block specific indices to identify them. threadldx.x,
blockldx.x, blockDim.x, gridDim.x

@ Libraries for scientific computations. cuBLAS, cuDNN and cuFFT.
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Introduction (continues - - )

Lolnstruction Cache

Warp Scheduler (32 threadic)
[T T—

le (16,384 x 32:6%)

osoncons | 32 - Rp— @ Qualifiers for kernels callable from CPU
; = and GPU: __global__ and __device__.

@ Qualifiers for allocations of sharable
variables within the block (i.e. within
SM). __sharable__.

@ Device selection:
cudaSetDevice(0) // Sets to device

TensoR corE i | TensoR coRe
4 GENERATION 4 GENERATION to 0 GPU

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory.
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Introduction (continues - - )

Core Core

L1 Cache L1 Cache

Core

L1 Cache

L2 Cache L2 Cache

L3 Cache

L2 Cache

DRAM

CPU GPU

@ CPU: Low Latency, GPU: High throughput.
@ GPU needs more time to spawn threads, but it can spawn thousands.

National
Supercomputing
Centre

@ H100 has more than 16,000 cores. FUﬁTSU
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SIMT vs SIMD

if (threadidx.x < 4) {
A;j
B;
} else {
X3
Y;
}
z

@ SIMT and SIMD both are data
parallelism

@ Since CUDA cores lacks exclusive
caches for each, the threads are
operated in locked steps.

@ If there is no if conditions,
SIMT is most efficient.

@ When there are if conditions,
the branching is handled through
masking.

Image credit: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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X; Y; Z;

B; Z;

Time

@ The threads are executed in CUDA cores
grouped into a size of 32. Each group is
known as a warp.

@ If the if condition is true for all threads in
a warp, and false for all threads in
different warp, the idling time of threads
in each warp is avoided.

@ If a warp would be idle waiting for memory
access, it will be replaced in their CUDA

cores by a different warp. - -
FUJITSU g'm‘,
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Common Flow of CUDA Programs

@ Define the kernel function outside "main ()" function.

@ In the "main()"” function,

90000

o
Qo
(¢]

Declare CPU variables and pointers to the memory in GPU.

Allocate memory in GPU using the pointers.

Copy from CPU to GPU the contents of variables required by kernel.
Launch the kernel in GPU from CPU.

After the calculations in GPU, copy the result from GPU memory to CPU
memory.

De-allocate the GPU memory to avoid any memory-leaks.

continue with CPU workload if any.

Finally, de-allocate the dynamically allocated memories in CPU if any.

@ Load the CUDA module: module load cuda/12.2.2

@ Compile using the command: nvcc -gencode arch=compute_90,
code=sm_90 -o executable name cude_filename.cu

@ Run: ./executable_name
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Memory Management in GPU

cudaMalloc((void**)&a, size_in_bytes)

Allocates memory in GPU, and stores the GPU
memory pointer in a CPU memory pointer.
Note, The "a" should already be a pointer
variable. The " (void**)" could be avoided in
modern versions of nvcc compiler.

cudaMemcpy(ptr_in_device, ptr_in_host,
size_in_bytes, cudaMemcpyHostToDevice)

Copies the content of size_in_bytes number
of bytes starting from the memory location
ptr_in_host to the GPU memory location that
starts at ptr_in_device.

cudaMemcpy(ptr-in_host, ptr_in_device,
size_in_bytes, cudaMemcpyDeviceToHost)

Same as above, but vice versa.

cudaMemset(ptr_to_integer_in_dev, 0, N *
sizeof(int));

Initialize in GPU. In this example, an array
given by its name, " ptr_to_integer_in_dev" (re-
member, array names are already a pointer)
gets initialized by zero.

cudaFree(ptr_in_device)

Frees the memory in GPU to avoid memory-
leaks.

Dr Malik M Barakthullah (Fujitsu)
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Important Keywords that Acts as Specifiers or Qualifiers

GPU kernel declaration callable from CPU

H _-global__ H H
H H GPU kernel declaration callable from GPU H
_device__
H H CPU functions (default) H
_-host__
Memory shared by threads within a "block” (see next slide)
__shared__
Examples

@ __global__ double* kernel_callable_from_CPU (double* arr) {--- }. A
function that takes in a double precision array and returns another such.

@ _device.. double* kernel_callable_from_GPU (double* arr) {--- } . Same as
the above but callable only inside another GPU kernel.

@ _shared__ double Array_accessible_by_all_thread[10,000]. All threads can access,
but possible for race. Use synchronization when needed.
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Memory Allocation for Functions for 2D and 3D Arrays

2D array: cudaMallocPitch()

// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;
cudaMallocPitch(&devPtr, &pitch,
width * sizeof(float), height);
MyKernel<<<108, 512>>>(devPtr, pitch, width, height);

// Device code
_-global__ void MyKernel(float* devPtr,
size_t pitch, int width, int height)

{
for (int r = 8; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int ¢ = @; ¢ < width; ++c) {
float element = row[c];
}
}
i
Here, "pitch” has the same meaning of

"stride”. The memory size that need to be
traversed when an index of an array in a di-
rection is incremented by 1. In this example,
it refers to the case when row is incremented.

The code is from:

https://docs.nvidia.com/cuda/cuda-c-programming-guide /

Dr Malik M Barakthullah (Fujitsu)
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3D array: cudaMalloc3D()

// Host code

int width = 64, height = 64, depth = 64;

cudaExtent extent = make_cudaExtent(width * sizeof(float),
height, depth);

cudaPitchedPtr devPitchedPtr;

cudaMalloc3D(&devPitchedPtr, extent);

MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);

// Device code
__global__ void MyKernel(cudaPitchedPtr devPitchedPtr,
int width, int height, int depth)
{
char* devPtr = devPitchedPtr.ptr;
size_t pitch = devPitchedPtr.pitch;
size_t slicePitch = pitch * height;
for (int z = 8; z < depth; ++z) {
char* slice = devPtr + z * slicePitch;
for (int y = @; y < height; ++y) {
float* row = (float*)(slice + y * pitch);
for (int x = @; x < width; ++x) {
float element = row[x];

+

}

"slicePitch” refers to the amount of memory
to be traversed when the z-direction index
increments by one.

Q
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Threads, Blocks, Clusters in grid

@ A "block” is a group of threads. Blocks binds to different SM's by default. H100
can contain up to 2048 threads in a single block.

@ Thread and block indices are 3-tuples to facilitate working with 3D arrays.

1 n n_n

Example: threadldx.x, blockldx.x. The "x" here can also be "y" or "z".

@ There is an in-built 3-tuple datatype for declaring number of threads and blocks for
the kernel functions in each direction: dim3 . Example: dim3 blocks(4, 4). Here

n_n

the no. of blocks in "z" direction defaults to 1.

@ Dimensions of a block are the number of threads in each direction. blockDim.x,
blockDim.y and blockDim.z

@ Computations in each block is independent of other blocks. Mostly data
parallelism: SPMD

@ It is best to synchronize the threads whenever a new set of calculations are going to
begin on the shared memory. Intrinsic function __syncthreads() ("Intrinsic’ means
low-level instruction with high performance.)

© g
FUJITSU

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 60 /106



Launching CUDA Kernels and Grid

@ Kernels are launched in a grid using triple
angular brackets containing the block and

thread dimensions. Example:
dim3 blocks(4, 4);
dim3 threads(16, 16);
myKernel<<<blocks, threads>>>(...);

@ The grid dimension in each direction gridDim.x,
gridDim.y, gridDim.z (blocks in the grid).

@ The grid dimension is not used in kernel launch.

@ H100 also supports "clusters”: A grid of blocks.

Grid dimensions needed to launch kernels in
clusters.

o 00 o 10 ok 20
,[eofaalea] [eo]noea] [ealnofea
&lon[0n]en| & on]an]es] & an[anfan
E 3 3

oa0afea| ® [oafoa]ea| *[eafoalea
bloaDims blocDims bloaDims

Heckde @) ockde(1) Hockdez)
_[eof0alea] [eo]aolea] [colno]ea

> £ £ £

E Slenjan|en| g en|on|en| glen|an|en
5 £ ] ]

2 02|02 ea| *[0n|na|ea] * [0a]0a]en
5

Slooims Socims Slocims

bock 02 Hoaide12 bockid 22
,[eofaalea]  [ea]noea]  [ealnofea
&lon[wn]en| & on]an]es] & ananfan
E E E

wa0a]ea| ® [oafoa]ea| *[eafoalea

SocDim Socim Socim

gridDim.

Image credit:
https://www.3dgep.com/cuda-thread-

execution-model
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A vector as a 1D Thread Block

@ Consider a vector v of 32 elements.
@ Split as below:
o 4 blocks Therefore, gridDim.x = 4 and 0 < blockldx.x < 3

o 8 threads in each block. Therefore, blockDim.x = 8 and 0 < threadldx.x <7

threadlIdx.x threadIdx.x

o[ J2lfefelellolJ2lfe[e[e[[ol 2

blockIdx.x = 2 blockIdx.x = 3

3‘4‘5‘6‘7 0‘1‘2

'

3‘4‘5‘6
g

~

@ Then, indexing in eqch block:
int index = threadldx.x + blockldx.x * blockDim.x

2022

threadIdx.x = 5

blockIdx.x = 2

0{1/2|3|4/5|6|7|8|9|10{11{12/13/14/15]16|17|18|19 23|2425|26/2728|29|30| 31

L e lelelel L [

0

1

2

7

0

1

2

3

4

5

6

7

<. 52
FUJITSU Eirpmare

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 62 /106



Vector Addition Using CUDA

malik > cpp > € vectoradd.cu > @ main()
#include <iostream>
#include <cuda runtime.h>

__global__ void vectorAdd(const float *a, const float *b, float *c, int n) {
int i = blockIdx.x * blockDim.x + threadIdx.x; // Compute thread index
if (i <n) {

c[i] = a[i] + b[il; // Perform addition
}
}

int main() {
int n = 100000; size_t size
float *h_a, *h_b, *h_c; h_a

n * sizeof(float);
new float[n]; h_b = new float[n]; h_c = new float[n];

for (int i = 0; i < n; i++) {
h_ali] = i; h_b[i] = i * 2;

}

float *d_a, *d_b, *d_c;
cudaMalloc(&d_a, size); cudaMalloc(&d_b, size); cudaMalloc(&d_c, size);
cudaMemcpy (d_a, h_a, size, cudaMemcpyHostToDevice);
cudaMemcpy (d_b, h_b, size, cudaMemcpyHostToDevice);

int blockSize = 256; int gridSize = (n + blockSize - 1) / blockSize;
vectorAdd<<<gridSize, blockSize>>>(d_a, d_b, d_c, n);
cudaMemcpy (h_c, d_c, size, cudaMemcpyDeviceToHost);

for (int i = 0; i < 10; i++) {
std:icout << h_a[i] << " + " << h_b[i] << " = " << h_c[i] << std:iendl;

}

delete[] h_a; delete[] h_b; delete[] h_c; cudaFree(d_a); cudafree(d_b); cudafree(d_c);

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models

Defines the kernel to
perform vector
addition by using
thread and block ids.

Allocates memory in
GPU from the host
function.

Copies buffers
calls the kernel
copy back to CPU

Frees memory

Exercise: Compile and
run this code.
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CUDA Functions for Performance Measuring

Snippet for measuring GPU kernel time:

cudaEvent_t start, stop;
cudaEventCreate (&start) ;
cudaEventCreate (&stop) ;
cudaEventRecord(start) ;

vectorAdd <<< nblk, nthrd >>> (---);
cudaEventRecord(stop) ;
cudaEventSynchronize (stop) ;

float ms;// ms stores time in "ms"
cudaEventElapsedTime (&ms, start,
stop) ;

Dr Malik M Barakthullah (Fujitsu)
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Measuring occupancy:

int numBlocks;
int blockSize = 32;

// Occupancy in terms of active blocks

// These variables are used to convert occupancy to warps
int device;

cudaDeviceProp prop;

int activeWarps;

int maxWarps;

cudaGetDevice(&device);
cudaGetDeviceProperties(&prop, device);

cudaOccupancyMaxActiveBlocksPerMultiprocessor (
&numBlocks,
MyKernel,
blockSize,
0);

activeWarps = numBlocks * blockSize / prop.warpSize;
maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;

Occupancy = 100 x no. of active warps /
max warp
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H100 Specific CUDA Enhancements: TMA

@ H100 cards have specific hardware to
carry out memory movements from
global memory to the shared memory
of thread blocks.

@ From the global memory of each
GPU, copying the rows or columns of
array (i.e., the data section of the
object " Tensor”) to the shared
location within a block requires
strided copying. (Strides are briefly
introduced in the section for MPI).

@ H100 GPU has a special method
known as Tensor Memory Accelerator
to do these strided copying to each
block’s shared locations through
dedicated hardware different from
CUDA cores.

@ These operations are asynchronous.

H100
Using TMA Unit

A100

Using LDGSTS instr
M Addr gen by threads

SM
Tensor isters Tensor Re

Threads reads

™A
Data Data+TransCnt| ~/ Reads
Global Memory

Global Memory

@ Advantages:
1. CUDA cores not used for this.
2. Better overlap of compute and copy.

@ Use cases:
o Deep Learning (cuDNN library )
o Computations on a stencil of grids

o Linear Algebra (cuBLAS) and
spectral problems (cuFFT)

Figure credit: https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
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H100 Specific CUDA Enhancements: TMA Example

Loading a tile (i.e. a rectangular section) of a matrix from global memory

to shared memory:

Without TMA:

__global__ void matmul(float *A, float *B, float *C, int N) {
__shared__ float tileA[BLOCK_SIZE][BLOCK_SIZE];

// Manual load into shared memory (CUDA cores do the work)
for (int i = @; i < BLOCK_SIZE; i++) {
tileA[threadIdx.y][threadIdx.x] =
A[(blockIdx.y * BLOCK_SIZE + threadIdx.y) * N
+ (blockIdx.x * BLOCK_SIZE + threadIdx.x)];
}

__syncthreads();

// Compute with tileA...
TMA: Requirement and enabling:

@ Use -arch=sm_90a as the compiler
flag.

@ Needs CUDA versions 12.x

Dr Malik M Barakthullah (Fujitsu)
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With TMA:

#include <cuda/pipeline> // CUDA 12+ with Hopper support

__global__ void matmul(float *A, float *B, float *C, int N) {

__shared__ float tileA[BLOCK_SIZE][BLOCK_SIZE];

// TMA descriptor (defines memory layout)
__tma_tensor_desc_t descA;

descA.addr = A;

descA.shape = {BLOCK_SIZE, BLOCK_SIZE};
descA.stride = {N, 1}; // Strided layout

// Async copy via TMA (hardware-accelerated)
cuda: :memcpy_async(tileA, descA, thread_block());
cuda::wait(); // Non-blocking wait

// Compute with tileA...
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Best practices

@ De-allocate all unwanted memories.

@ Memory Pooling: If reusing a memory
of one variable is possible for a new
variable, it is better than a new
allocation. This avoids overhead and
fragmentation of address space.

@ Coalesced access: Make sure to get
the adjacent threads act on
contiguous parts of memory with
"stride=1". This will help with the
cache memory for each thread block.

@ Use shared memories of thread-block
for faster access.

@ Pin the CPU memory and use
asynchronous methods for memory
movements.

Dr Malik M Barakthullah (Fujitsu)

@ Use multiple CUDA streams for a better

overlap between compute and copy
operations.

Use CUDA-optimized libraries such as
cuDNN, cuBLAS, cuFFT, cuSOLVER,
cuRAND, and NCCL.

If doing Checkpointing, use a separate
stream to have a better overlap with the
streams for compute kernels. It is best to
use /raid storage via GPUDirect for this
purpose. This will reduce the overhead of
memory movements through CPU.
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Closing Remarks for the Workshop

@ Avoid CPU only jobs. ASPIRE2A+ requires GPU'’s to be used in all job submissions.

@ It is recommended to use most of the GPU memory. In deep-learning workloads, this
possible by increasing the batch size, beside the model size. Increasing the batch size could
allow you to use large learning rates initially, saving the GPU time considerably.

@ Make sure to reach a highest possible SM-utilization rate (reported by the job output).
This can be achieved by increasing the model size in the case of deep-learning applications.
In pure CUDA codes, this can be achieved by increasing the problem size, by using several
streams, and by getting the memcpy to overlap in time with kernel jobs.

@ Do not mention a container in the job script if it is not used by the job. This will increase
unnecessary 10 on the /raid storage.

@ Make sure to load the right modules and mention the path sequence in a manner right
versions of the software are used. For example, you may want to use your local Python, but
the system Python may be preceding in the PATH variable.

@ If not using the obtained interactive session through gqsub, make sure to release it to
facilitate the usage by other users.

@ Avoid submitting sleep jobs to hog the node. It will reduce the efficiency the system,
besides depleting the SU allocation for the project.
S CIN......
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OpenMP: Introduction and Processor
Bindings
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Introduction

Features
@ Parallelization using threads: Threads share single process

@ Works on shared memory: All threads can access all variables, but some of them
could be thread-private

@ Uses compiler directives: Switch between parallel & serial versions at compile time
without a need to change the codes.

@ Environment can controls the number of threads unless overridden by directives

Drawbacks
@ Not suitable for distributed memory
@ Race condition by threads to access same address location if programmed badly

@ Thread synchronization could slow-down executions.

<. 52
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Shared Memory

@ OpenMP exploits shared-memory architecture of multiple CPU’s in a single
node

@ When the number of threads (T) is less than number of physical cores (P),
i.e., T < P, each threads binds to the physical cores. If 2P > T > P, then
the threads binds to logical cores (hardware threads).

FUjiTsu

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 71/106




Fork & Join and Shared & Private Memories

Single Program Multiple Data (SPMD) parallel is most common with OpenMP.

Local

@ Master thread: Thread id =0 merory

@ Forks in parallel region and joins
as it finishes

thread thread

forall threads

Local
memor

Local
memory.

thread thread

@ Forking can be nested

P: llel Regi
Mastr N T e Threads can have local
Thread region .
moreen | memories
=< =3 =5
\ \\ / @ Mostly uses shared memory
“Sequential Parts @ synchronization is needed when

accessing shared data
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Sample Code: Pragma, Parallel & Parallel For

malik > cpp > € openmp_hello_for.cpp > @ simple(int, float *, float *)
#include<iostream>

#include "omp.h"

using std::cout; using std::endl;

mal iknGa2ap-dgx038:~/cpp$ export OMP_NUM_THREADS=10
a enmp openmp_hello_for.cpp

VOid SimpIE(int n,'FlDSt *a, float $b){ ( Dm-helvlo lfiom hell/: {a;rt'om 34))hello (from hello (from
#pragma omp parallel :;:221
{ (from 5)
int thread_id = omp_get_thread_num(); - (from 7

cout << "hello (from " << thread_id << ")" << endl;
} ]
#pragma omp parallel for malikm@a2ap-dgx038:~/cpp$ [l
for(int i=1;i<n;i++) b[i]=(a[i]+a[i-1])/2.8;

}

int main(){ The iteration index is thread-

float array_a[1@8]{e}; float array_b[1@e]{8}; private by default.
for (int x = @; x<188; x++) array_a[x] = 1@%x;

simple(1e@, array_a, array_b);

cout << array_b[@] << endl;

}

FUjiTsu 8
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OpenMP Processor Binding to Enhance Performance

@ Set the environment variable, socket w/ physical core w/ 2
OMP_PROC_BIND=true 4 physical cores hardware threads

|
@ The threads can be bounded to ! L -
be closer to each other, or @
spread out to all physical cores. 00 00]00300 00]00100
@ #pragma omp parallel proc_bind(master) binds all threads to the single core

@ #pragma omp parallel proc_bind(close) binds threads such that the the
threads with adjacent thread-id's are closer to each other

@ #pragma omp parallel proc_bind(spread) binds threads such that the the

threads with adjacent thread-id's are spread to the whole range of available
CPU core id's.

o If the data that each thread works on is closer to memory,
proc_bind(close) could benefit by avoiding cache misses.
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OpenMP Processor Binding: OMP_PLACES

@ OMP_PLACES controls how the CPU'’s including hardware threads are
numbered

o OMP_PLACES options: threads, cores, sockets, or list convention

@ These following options are equivalent for cores having 4 hardware threads

export OMP_PLACES=threads

export OMP_PLACES="threads(4)"

export OMP_PLACES="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"

export OMP_PLACES="0:4,4:4,8:4,12:4"

export OMP_PLACES="0:4:4:4"

@ #pragma omp parallel proc_bind(spread) binds threads such that the the
threads with adjacent thread-id's are spread to the whole range of available
CPU core id's.

@ If the data that each thread works on is closer to memory,
proc_bind(close) could benefit by avoiding cache misses.
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Using OMP_PLACES

malik > cpp > € openmp_OMP_PLACES.cpp > & main()
#include<iostream>

#include "omp.h"

using std::cout; using std::endl;

int main(){
omp_set_dynamic(@); omp_set_num_threads(5);
#pragma omp parallel

{
int num_threads = omp_get_num_threads();
int num_places = omp_get_num_places();
int num_procs_per_place = omp_get_place_num_procs(0);
#pragma omp master
{
cout << "No. of threads " << num_threads
<< " No. of places " << num_places << endl;
cout << "No. of processors " << num_procs_per_place
<< " in place id @ "<< endl;
}
}

#pragma omp parallel proc_bind(spread)
#pragma omp critical

{
int thread_id = omp_get_thread_num();
int place_id = omp_get_place_num();
cout << "thread id " << thread_id
<< " place id " << place_id << endl;
¥

Chosen parameters:
o Five threads
@ proc_bind(spread)
o OMP_PLACES=cores

mal ikn@a2ap-dgx03;
mal ikm@a2ap-dgx03!
mal ikm@a2ap-dgx03;
./a.out | sort
processors 2 in place id
threads 5, . of places 14

id 0, place id 0, cpu id 42
id 1, place id 3, cpu id 157
id 2, place id 6, cpu id 160
id 3, place id 9, cpu id 163
id 4, place id 12, cpu id 166
malikm@a2ap-dgx038:~/cpp$ I

Output on a compute node with:
1 socket, 14 cores, and
2 hardware-threads in each core
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proc_bind() vs OMP_PLACES

Threads = 5;

proc_bind(spread); OMP_PLACES=cores

malikm@a2ap-dgx038:~/cpp$ ./a.out | sort
No. of processors 2 in place id 0

No. of threads 5, No. of places 14
thread id 0, place id cpu id 42
thread id 1, place id cpu id 157

cpu id 160

cpu id 163

cores = 14;

thread id 2, place id 6,
thread id 3, place id 9,
thread id 4, place id 12, cpu id 166
malikm@a2ap-dgx038:~/cpp$ I

malikm@a2ap-dgx038:~/cpp$ ./a.out | sort
processors 2 in place id 0
threads 5, No. of places 14
id 0, place id 0, cpu id 154

id 1, place id 1, cpu id 43

id 2, place id 2, cpu id 44

id 3, place id 3, cpu id 45

id 4, place id 4, cpu id 46
mal ikm@a2ap-dgx038:~/cpp$ I

Dr Malik M Barakthullah (Fujitsu)

hardware-threads = 2;

Advanced Workshop on Parallel Programming Models

socket=1

proc_bind(spread); OMP_PLACES=threads

malikm@a2ap-dgx038:~/cpp$ ./a.out | sort
processors 1 in place id 0
threads 5, No. of places 28
id 0, place id 0, cpu id 42
id 1, place id 6, cpu id 45
id 2, place id 12, cpu id 48
id 3, place id 18, cpu id 51
id 4, place id 23, cpu id 165
malikm@a2ap-dgx038:~/cpp$ I

proc_bind(close); OMP_PLACES=threads
malikm@a2ap-dgx038:~/cpp$ ./a.out | sort
No. of processors 1 in place id 0

No. of threads 5, No. of places 28
thread id 0, place id 0, cpu 1id 42
thread id 1, place id 1, cpu 1id 154

, cpu id 43

(¢}
1
thread id 2, place id 2
thread id 3, place id 3
thread id 4, place id 4
malikm@a2ap-dgx038:~/cpp$ il

, cpu id 155
cpu id 44

O © .
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Sample Application Using OpenMP: Eigen and PLASMA

Eigen package uses OpenMP for matrix multiplications. Following is a snippet

from " Eigen/src/Core/products/Parallelizer.h".

#if defined(EIGEN_HAS_OPENMP)
#pragma omp parallel num_threads(threads)
{

Index i = omp_get_thread_num();

// Note that the actual number of threads might be lower than the number of
// requested ones
Index actual_threads = omp_get_num_threads();

Another linear-algebra package that uses OpenMP is PLASMA:
. PLASMA: Parallel Linear Algebra Software for Multicore
Using OpenMP

JACK DONGARRA, MARK GATES, AZZAM HAIDAR, JAKUB KURZAK,

PIOTR LUSZCZEK, PANRUO WU, ICHITARO YAMAZAKI, and ASIM YARKHAN,
University of Tennessee, USA

MAKSIMS ABALENKOVS, NEGIN BAGHERPOUR, SVEN HAMMARLING,
JAKUB SISTEK, DAVID STEVENS, and MAWUSSI ZOUNON,

‘The University of Manchester, UK

SAMUEL D. RELTON, The University of Leeds, UK

© © .
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Scalability of thread parallelization using Eigen package

Matrix multiplication using Eigen:

Data type: complex

double

malik > cpp > € matmult.cpp > @ main()

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;

int main()

{
setNbThreads(1);
int row_{20008};
MatrixXcd M = MatrixXcd
MatrixXcd N = MatrixXcd
MatrixXcd P(row_,row_);
P = M*N;

¥

No.
multiplying two n x

: :Random(row_,row_);
: :Random(row_,row_);

of flops. Naops ~ O(n®) for

n matrices. In

general, the time, t ~ Ngops.

Dr Malik M Barakthullah (Fujitsu)
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Case 1: n = 2000, Nipreads = 1

malikm@a2ap-dgx038:~/cpp$ g++ -fopenmp -03 matmult.cpp
malikm@a2ap-dgx038:~/cpp$ time ./a.out

0m5.045s

Om4.908s
sys Omo.116s
malikm@a2ap-dgx038:~/cpp$ il

=1
Om38.235s
0m37.594s
sys Omo.636s
ma'likm@a2ap-dgx038:~/cpp$ I
Case 3: n = 4000, Nihroads = 8

0Om6 .669s
0m37.732s
Om0.692s

real
user

sys
ma'likm@a2ap-dgx038:~/cpp$ Il

When nis doubled, time t ~ 23, since Ngops ~ O(n?).
But when Nihyeads is multiplied by 23 in case 3, the

time does not reduce to that of Case 1. This shows
© © .
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OpenMP: Closing Remarks

@ Race-condition and conflicting memory updates are common issues while
using threads.

o ASPIRE 2A+ compute nodes have 112 physical cores each with 2 hardware
threads. Each node also have 2 sockets. These should be considered when
declaring OMP_PLACES.

@ Binding threads that access data located closer in memory enhances
performance.

@ compiler optimization flags "-O3" and "-02" can improve the
thread-parallelized codes better than MPI-parallelized codes, since former
mostly uses threads on loops, which are highly susceptible for optimization by
these flags.

FUjiTsu
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OpenMP: Closing Remarks (Continued - - -)

if the data of two threads are different objects altogether, best to spread
them out to enhance the performance. In this spreading to far enough cores
will make use of NUMA feature. (ASPIRE 2A+ has two NUMA regions in
each compute nodes, one for each socket.)

Cores’ NUMA bindings:

malikm@a2ap-dgx010:~$ numactl -H
available: 2 nodes (0-1)
node © cpus: © 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 12
8 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 1
48 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
1031784 MB
397798 MB
node 1 cpus: 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 162 1
03 104 105 106 107 108 109 110 111 168 169 170 171 172 173 174 175 176 177 178
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 21
8 219 220 221 222 223
: 1032151 MB
300508 MB
distances:
0 1
10 21
1; 21 10

malikm@a2ap-dgx010:~$
FUJiTSU & scc
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MPI: Introduction and Processor Bindings
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Introduction

Features

@ Parallelization using multiple processes (like separate applications) instead of
process-id-sharing threads: Processes can be on different nodes

@ Commonly used in distributed-memory clusters, though it works with shared
memory as well: Variables are exclusively accessible by their respective processes;
Sharing is only possible by message passing.

@ Uses libraries, not directives: Example implementations: Open MPI, MPICH,
MVAPICH, Cray MPICH, etc.

@ ASPIRE 2A+ uses Open MPI (default version 4.1.2. Alternative: 5.0.5)

Drawbacks
@ Extensive code modification on a serial code, if decided to parallelize using MPI.

@ In shared-memory machines, communications increase overhead when compared to
OpenMP.
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MPI Communication

Node 1

=

Node 2

]

Node 3

—

=

Image credit: https://github

ucl.ac.uk/research-

Node 4

=)

Dr Malik M Barakthullah (Fujitsu)

ing-with-cpp

@ MPI communications (red
arrows) move copies of
data between nodes via
high-speed interconnect.

@ The interconnect is
Infiniband in ASPIRE
2A+.

@ Three types:

@ Point to point,

@ Collective, and

© One-sided (through
RMA window)

5 3
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Point-to-Point and Collective Communications

Point-to-Point:

@ Uses send/receive API calls.

@ Destination and Source ranks are
mentioned

@ Each call is communication
between only a pair of processes

@ It can be a blocking or
non-blocking communication.

CPU Core 1 CPU Core 2

Process 0 Process 1

Memory Memory
m send receive m

Image credit: https://hpc.nmsu.edu/discovery/mpi/introduction/

Dr Malik M Barakthullah (Fujitsu)
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Collective Communication:

@ Synchronization by a barrier

@ Broadcasting, gathering and
scattering operations.

@ Reduction across the processes via
a reduction operation.

0000 @000
\g/ \%/

broadcast scatter

@000 0000
\%/ \%/

gather reduction

Image credit:

https://hpc-tutorials.linl.gov/mpi/collective_.communication_routines /
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Defined Datatypes for Sending Sections of Arrays

@ Sending non-contiguous parts of memory will need loops with primitive datatypes.
@ This will result in communication overhead hitting the performance.

@ Solution: Group non-contiguous parts of memory by " Defined Datatypes”.

For example, the defined-datatypes can be used to define the each half of a matrix:
This type of "defined-types” are used in

the code "matmult_mpi_4_nodes.cpp”
and in "matmult_mpi_16_nodes.cpp”.

Mg e M Relevant portions are shown as a snippet
: ) in the next slide.
Muy2yn - My2).n
M = Note: Each half shown here are con-
Mnj2s1)1 -+ Mnj2s1)n tiguous in memory in "row major” stor-
: L : age convention (a default in C/C++4),
Mn ) o M‘n . but not in column-major storage conven-

tion (which is default in Fortran and in
a C++ package, Eigen). FUﬁTSU
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Defined Datatypes for a Sub-array: Example

malik > cpp > € defined_type_subarray.cpp > & main(int, char *)
#include <iostream>

#include <mpi.h>

int main(int argc, char ** argv)

{

int myrank, size;

MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

const int rows = 2060; const int cols = rows;

const int half_rows = rows/2;

int sizes[2] = {rows, cols}; int subsizes_row2[2] = {half_rows,
int starts_row2[2] = {half_rows, 0};

//USED IN "matmult_mpi_4_nodes.cpp"

MPI_Datatype type_row2;

MPI_Type_create_subarray(2, sizes, subsizes_row2, starts_row2,
MPI_ORDER_FORTRAN, MPI_C_DOUBLE_COMPLEX, &type_row2);

MPI_Type_commit (&type_row2); MPI_Finalize();

cols};

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models

This example uses
column-major storage
convention.

See the codes "mat-
mult_mpi_4_nodes.cpp”
and in "mat-
mult_mpi_16_nodes.cpp”
for how they are used.
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MPI Process: Slots and Processing Elements(PE)

@ Slot: Unit of allocation of resources.

processes mentioned in the job script.

Default: cores. If "-use-hwthread-cpus” flag used: hardware threads
If "-np" is omitted, the number process will be same as the number of MPI

The No. of slots on a node can be greater or less than the number of cores.

Determined by scheduler by "mpiprocs” value in the PBS job script.
e slot information is given by - -display-map or - -display-allocation flags.

+ CPLUS_INCLUDE_PATH=~/cpp/eigen
matmult_mpi_4_nodes.cpp

display ation ./a.out

state=UP

Data for JOB offset 0 Total slots allocated 14

JOB MAP

Data for node: a2ap-dgx038 Num slots: 14  Max slot: Num procs: 4
Process OMPI jobid: App: 0 Process 8 d: UNBOUND
Process OMPI jobid: App: © Process r : UNBOUND
Process OMPI jobid: App: © Process ran| : UNBOUND

: UNBOUND

Process OMPI jobid: App: O Process rank: 3 Bound

@ Process Element (PE):

o Default: core
o If "-use-hwthread-cpus” flag used: hardware threads

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models
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MPI Process Binding Using - -map-by and - -bind-to

@ - -map-by The category (core, hwthread, or node, socket, etc) by which the
location is changed when the process rank is changed.

@ - -map-by core, for example, changes by core-id when process rank is changed by
one.

@ - -map-by hwthread changes by hardware thread when the process rank is changed.

@ - -bind-to Instructs which collection of hardware need to be allotted for each
process rank.

@ - -bind-to core tells the process rank to use all hardware threads of the core where it
is located.

@ - -bind-to hwthread tells the process rank to use only one hwthread at the location

"

it has been put by the "- -map-by” flag.

The example usage is, mpirun -np 4 —display-map —map-by core —bind-to core ./a.out

Fufirsu [

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 89 /106




MPI Process Binding Using - -map-by and - -bind-to
(continued - - -)

@ mpirun -np 4 —display-map —map-by core —bind-to core ./a.out.

mal ikm@a2ap-dgx038:~/cpp$ mpirun -np 4 --display-map --map-by core --bind-to core ./a.out
Data for JOB offset © Total slots allocated 14

JoB MAP
Data for node: a2ap-dgx038 Num slots: 14 Max slots: 0 Num procs: 4
Process OMPI jobi p: O Process rank: 0 Bound: socket O[core O[hwt ©-1]]:[BB/../../../../..
Process OMPI jobi : @ Process rank: 1 Bound: socket O[core 1[hwt 0-1]

Process OMPI jobi : 0 Process rank: 2 Bound: socket O[core 2[hwt 0-1]]:[.
Process OMPI jobid: : @ Process rank: 3 Bound: socket O[core 3[hwt 0-1]]:[.

In this screenshot, the letter "B" signifies the "Bound” region of hardware
threads for each rank.

@ mpirun -np 4 —display-map —map-by core —bind-to hwthread ./a.out.
malikm@a2ap-dgx038:~/cpp$ mpirun -np 4 --display-map --map-by core --bind-to hwthread ./a.out
Data for JOB offset @ Total slots allocated 28

JOB MAP =

Data for node: a2ap-dgx038 Num slots: 28 Max slot procs: 4

Process j App: 0 Process ran : socket O[core O[hwt 0]]:[B./../../.

Process App: O Process ran : socket O[core 1[hwt 0]]:[../B./../.
Process App: O Process ran : socket O[core 2[hwt 0]]:[../../B./.
Process OMPI jobid: App: O Process rank: 3 Bound: socket O[core 3[hwt 0]]:[../../../B.

[ee}
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MPI Process Binding Using - -map-by and - -bind-to
(continued - - -)

@ mpirun -np 4 —display-map —map—by hwthread —bind-to core ./a.out.

mal ikn@a2ap-dgx038:~/cpp$ mpirun -np 4 --d --map-by hwthread --bind-to core ./a.out
Data for JOB offast © Total slots atlocated 14

JOB MAP

Data for node: a2ap-dgx038 Num slot 14  Max slots: 0 Num procs: 4

Process OMPI jobid: r rank: © Bound: socket O[core O[hwt 0-1]1:[BB/../..
Process OMPI jobid: rank: 1 Bound: socket O[core O[hwt 0-1]]:[BB/../..
Process OMPI jobid: rank: 2 Bound: socket O[core i[hwt 0-1]1:[../BB/..
Process OMPI jobid: 10 Pr rank: 3 Bound: socket O[core 1[hwt 0-1]1:[../BB/..

mal ikm@a2ap-dgx038:~/cpp$ mpirun -np 4 --display-map --map-by hwthread --bind-to hwthread ./a.out
Data for JOB offset 0 Total slots allocated 28

JOB MAP

Data for node: a2ap-dgx038 Num slots: 28 Max slots: @  Num procs: 4
Process OMPI jobid: App: 0 Process rank: 0 Bound: socket 8[core O[hwt 0]]:[B./../
Process OMPI jobid: : 0 Process rank: 1 Bound: socket ©[core O[hwt 1]]:[.
Process OMPI jobid: : 0 Process rank: 2 Bound: socket @[core L[hwt 0]]
Process OMPI jobid: : 0 Process rank: 3 Bound: socket ©[core L[hwt 1]]

These options can also be performed with respect to NUMA nodes. However, in ASPIRE 2A+,
Each node has only 2 NUMA nodes (opposed to 8 in ASPIRE 2A). Therefore, usigg "n " as

the parameter is in effect same as that of using "socket”. FUJITSU 3 Siironouing
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MPI Process Binding using - -map-by and - -bind-to
(continued - - -)

@ mpirun -np 4 —display-map —map-by slot:PE=3 —bind-to core ./a.out.

The program uses two threads for matrix multiplication. None of the above
combinations allotted two physical cores for these threads. This will become
possible only when each MPI process is given two

physical cores. This is achieved by this combination of " map-by" and " bind-to"

malikm@a2ap-dgx038:~/cpp$ mpirun -np 4 --display-map --map-by slot:PE=3 --bind-to core ./a.out
Data for JOB offset 0 Total slots allocated 14

= JOB MAP =

Data for node: a2ap-dgx038 Num slots: 14 Max slots: ©  Num procs:
Process OMPI jobid: App: @ Process rank: 0 Bound: socket D[core o[hwt 0-1]], socket O[core 1[hwt 0-1]], socket O[core 2[hwt
lod.. /.

]
rank: 1 Bound: socket O[core 3[hwt 0-1]], socket 0[core 4[hwt 0-1]], socket ©[core 5[hwt

rank: 2 Bound: socket ©[core 6[hwt 0-1]], socket @[core 7[hwt ©-1]], socket ©[core 8[hwt

Ap rank: 3 Bound: socket 0[core 9[hwt 0-1]], socket 6[core 10[hwt 6-1]], socket 0[core 11[hw
AN TN RN - TIINETS

o exercise: Compile matmult_mpi_4 _nodes.cpp and
matmult_mpi_4 _nodes.cpp using mpic++ and run using mpirun with
various combinations of "—map-by” and "—bind-to" options. Alsq try
"—cpu-list <comma separated list>" option. FUjiTsy
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MPI: Closing Remarks

o Extra care is required with hybrid code that uses MPI and OpenMP. The
MPI processes must be allocated at enough distance to make way for threads
in each MPI process.

@ Non-blocking communications must be used with care. Always call
MPI_Wait() or similar functions before working on the received data.

@ The commands
e Istopo —pid $(pgrep <executable> | head -<number from 1 to n>), or
e ps -eo pid,psr,comm | grep <executable>
could show/list the CPU'’s being used. (The command "Istopo” would not
work on compute nodes a present since the X11 forwarding is forbidden).

Fufirsu [
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Thank You
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Appendix
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Sample MPI Send & Receive Code

malik > cpp > G mpi_send_recv.cpp > @ main(int, char **)
#include <iostream>

#include "mpi.h"

#include <vector>

int main(int arge, char ** argv) {
int size, rank;
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank); malikm@a2ap-dgx038:~/cpp$ mpic++ mpi_send_recv.cpp
nal ikn@a2ap-dgx038:~/cpp$ mpirun -np 2 ./a.out
12345
if (rank == ) { mal ikm@a2ap-dgx038:~/cpp$ Il
std: :vector<double> vec = {1.8, 2.0, 3.8, 4.0, 5.0}; . . .
MPI_Send(vec.data(), 5, MPI_DOUBLE, 1, 1@, MPI_COMM_WORLD); Compilation and Running

else if (rank == 1) {
std::vector<double> vec(5);
MPI_Recv(vec.data(), 5, MPI_DOUBLE, @, 1@, MPI_COMM_WORLD, &Stat);
for (auto i: vec) std:i:icout << i << ' ';
std::cout << std::endl;

MPI_Finalize();

FUjiTsu 8
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Sample Code for Collective Communication

malik > cpp > € mpi_scatter.cpp > @ main(int, char **)

#include <iostream>
#include "mpi.h"
#include <vector>

int main(int argc, char ** argv)
int size, rank;

MPI_Status Stat;

MPI_Init(&argc,&argv);

{

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

std::vector<double> vec_send
std::vector<double> vec_recv

MPI_Scatter(vec_send.data(),

= {1.e, 2.0, 3.8, 4.0};
(2);

2, MPI_DOUBLE, vec_recv.data(),

2, MPI_DOUBLE, @, MPI_COMM_WORLD);

std::cout << "vector recieved in rank "

<< "t M << stdr:endl;

for (auto i: vec_recv) std::cout << i <«

std::cout << std::endl;
MPI_Finalize();

Dr Malik M Barakthullah (Fujitsu)

In this code a vector of
four elements is split into
two halves and scattered
to two nodes. Therefore,
it needs to be run with 2
MPI processes as shown
below.

mal tkm@a2ap-dgx038:~/cpp$ mpic++ mpi_scatter.cpp
mal ikm@a2ap-dgx038:~/cpp$ mpirun -np 2 ./a.out
vector recieved in rank 0:

12
vector recieved in rank 1:
34

mal ikm@a2ap-dgx038:~/cpp$ |

Compilation and Running
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OpenMP: Important API Functions, Directives,

Environment Variables

H OMP_NUM_THREADS=10

Sets number of threads

omp_set_num_threads(10)

Sets number of threads;
$SOMP_NUM_THREADS

Supersedes

H omp_get_num_threads()

Gets the number of threads

H omp_get_thread_num()

Gets the thread-id

omp_get_wtime()

Gets wall-time from an arbitrary reference
instance. May vary between threads

#pragma omp parallel

The scope that follows will be executed on
all threads

H #pragma omp parallel private(varl, var2)

varl and var2 becomes thread-private

|

H #pragma omp parallel shared(varl, var2)

All threads shares "varl” and "var2”

|

H #pragma omp parallel for

The for-loop that follows will be split ad ex-

Dr Malik M Barakthullah (Fujitsu)
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OpenMP: Important API Functions, Directives,
Environment Variables

Threads will execute the scope in a

##pragma omp critical queue; appears inside a parallel scope

Threads will execute the following value
update to a shared variable in a queue;
appears inside a parallel scope

#pragma omp atomic

Execution only on thread-id=0
#pragma omp master

explicit barrier point in the code for all
threads to arrive before proceeding to
next statement

#pragma omp barrier

Execution by one thread only. Implicit

#pragma omp single barrier implied at the end of its scope

When mentioned inside a parallel region,
the region marked by this directive will

be run sequentially
FUTsU M
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OpenMP: Important API Functions, Directives,
Environment Variables

H All variables in the threads are shared ‘

#pragma omp parallel default(shared)

A non-iterative parallel section where sub-
sections marked "section” are executed in
each thread

#pragma omp sections

Section that need to be executed by
one thread. Placed inside the scope for
" #pragma omp sections”

#pragma omp section

Task that need to be run by a thread in the

##pragma omp task parallel scope started earlier

@ The "tasks" could be executed in any order and at anytime by the processor

@ During iteration over array elements group the operations related to each
object in one or fewer locations in the code if possible. This will help avoid

cache misses.
O [5<) onat
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Clauses for "omp parallel for”

Removes the implied barrier at the end of the "for”

nowait loop

Same as the above, but the iteration index of the

schedule(static) nowait "for” loops becomes global among threads

. variable var at the end of each thread will be summed.
reduction(+-var) (*, -, || and && are other allowed reduction opera-
tions)

varl and var2 are thread-private initialized randomly
private(varl, var2))

varl and var2 are thread-private initialized with values

firstprivate(varl, var2)) in the master thread before forking

. varl and var2 are thread-private with final value in
lastprivate(varl, var2)) the master thread equal to that of the last executed
thread

. o collapse the next two nested for-loops into a single
collapse(2) private(i,j,k) loop and parallelize

FujiTsu e
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Important MPI Setup and Query Functions

MPI_Init(&argc, &argv)

Initialize MPI

MPI_Finalize()

Call the destructor of MPI

MPI_COMM_WORLD

Default communicator with all ranks

MPI_Comm_rank(MPI_COMM _WORLD, &r)

MPI_Comm _size(MPI_COMM_WORLD, &n)

Get the no. of processes in variable "n”

MPl_initialized(&flag), MPI_finalized(&flag)

Check whether MPI initialized or finalized

MPI_Type_size(datatype, &size)

Get the rank in variable "r” ‘
Get the size in bytes ‘

MPI1_Wtime()

Get the time from a reference time as double

MPI_Abort(MPI_.COMM_WORLD, 1)

H
H
H
H
H
H
H
H
H

Abort with error code 1 ‘

Dr Malik M Barakthullah (Fujitsu)

Advanced Workshop on Parallel Programming Models

Fufirsu [

April 2025

102 /106



Important MPI Point-to-Point

Functions

MPI_Send(&buf, count,
MPI_COMM_WORLD)

type, dest, tag,

Send " count” number of data of type " type”
to the rank, "dest” with tag, "tag".

MPI_Recv(&buf, count, type, source, tag,
MPI_COMM_WORLD, &Stat)

Similar to the above, but from the rank
"source”

MPI1_Send and MPI_Recv combined

MPI_Sendrecv(&sendbuf, sendcount,
sendtype, dest, sendtag, &recvbuf,
recvcount, recvtype, source, recvtag,
MPI_COMM_WORLD, &status)
Nonblocking send; Does not wait for the re-
MPI_Isend(&buf, count, type, dest, tag, usability of send-buffer

MPI_COMM_WORLD, &request)

MPI_lrecv(&buf, count, type, source, tag,
MPI_COMM_WORLD, &request)

Nonblocking receive; Does not wait for the
receive to begin or complete

MPI_Wait(&request,&status)

Used in conjunction with non-blocking send
or receive. This blocks until they complete.

MPI_Waitall(count, &array_of_requests, &ar-
ray_of_statuses)

Same as above but used for many non-
blocking send or receive requests.
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MPI: Collective Communication Functions

H

MPI_Barrier (MPI_.WORLD_COMM)

H Block until all processes call this function. H

Send to all processes.

MPI_Bcast (&buffer, count, type, root,
MPI_-WORLD_COMM)

Divide the memory into parts and send to
MPI_Scatter (&sendbuf, sendcnt, send- the processes one each.
type, &recvbuf, recvent, recvtype, root,
MPI_-WORLD_COMM)

The opposite of MPI_Scatter mentioned.
MPI_Gather (&sendbuf, sendcnt,  send- || The "sendbuf’ from each process are con-
type,&recvbuf, recvcount, recvtype, root, catenated in the "root” process.

MPI_-WORLD_COMM)

Same as MPI_Gather, but the effect is as if

MPI_Allgather (&sendbuf,sendcount, || the result is broadcast to all processes.
sendtype, &recvbuf, recvcount, recvtype,
MPI_-WORLD_COMM)

Same as the MPIl_Gather, but the resulting
MPI_Reduce (&sendbuf, &recvbuf, count, array elements are reduced by the reduction

type, op, root, MPI_.WORLD_COMM)

operation, "op”.

MPI_Allreduce (&sendbuf, &recvbuf, count,
type, op, MPI_WORLD_COMM)

Same as MPI_Reduce but the effect is as if

its result is broadcast to all process
FUJITSU NPy 35ve
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Matrix Multiplication by Domain Decomposition

Let us consider the matrix multiplication, P = MN, where M and M are n X n matrices
such that n is a multiple of 4. Then M and N can be split into four row and four column

matrices, respectively. Then, we can write P as:

P11 | Pii | P | Pu
p_ P> [ P2 | P32 | Pa2
Pi3 | P23 | P33 | P
Pis | P | P3s | Pas

Ny [N NG [N |
M3

M,

where each of Pj blocks with i € {1---4} and j € {1---4} is given by P; = M;N;. (Pj,
M; and N; are (n/4) x (n/4), (n/4) x n and n x (n/4) in sizes, respectively.)
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Matrix Multiplication by Domain Decomposition
(continues)

Remarks:
@ Each of P can be computed in an MPI process with rank, r =4(i — 1) + (j — 1).
@ Therefore, it can be performed in 16 MPI processes.

@ Defined datatypes need to be created for Each M; and N; and sent to the rank,
r=4(i—1)+ (j— 1) from rank 0.

@ After multiplication each of Pj need to be received from rank r = 4(i — 1) + (j — 1)
into the rank 0. For this the defined datatypes for each of Pj need to be created as
well.

Exercises:

@ Compile matmult_mpi_4_nodes.cpp using "mpic++" compiler and run via a job
script with 4 MPI processes on a single node and note down the time of execution

@ Repeat it with matmult_mpi_16_nodes.cpp on 16 nodes.
@ Since these codes are hybrid, compile with "-fopenmp” and repeat.

<O © -
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