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ASPIRE 2A+ Architecture
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DGX H100 SuperPOD: Overview

Nodes: 40 compute nodes, 2 login
nodes, 2 admin nodes

Parallel filesystem storage:

/home + /data/projects: 25PB
/scratch: 2.4 PB

Network topology: Non-blocking
Leaf-Spine. Leaf switches connect all
compute nodes. Spine switches
connect all Leaf switches

Built for AI requirements:

Support for NGC containers
through Enroot
FP8 and transformer engine
Large memory GPU
Fast intra-node GPU comm.
Tensor cores with more
throughput than A100.

Non-blocking Leaf-Spine Topology:
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Nodes and Interconnects

Overview:

Infiniband interconnect with 400
GB/s HCAs (ConnectX-7) for
inter-node communications.

These HCA’s allow GPUDirect
RDMA through Infiniband fabric for
inter-node GPU-GPU comm.

These HCA’s also allow MPI
communications via CPU

NVLINK 4.0 for intra-node GPU-GPU
communications at 900GB/s

Nvlinks are connected by NVSwitch
which has several TB/s bandwidth.

28 TB local SSD storage (\raid) on
each compute node.

DGX H100 node:

Image credit:

https://www.naddod.com/blog/unveiling-the-evolution-of-nvlink
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Compute Node CPU

Overview:

Intel(R) Xeon(R) Platinum 8480C

2TB Memory

112 physical cores (3.8 GHz max, 2.0
GHz base)

224 hardware threads

2 NUMA nodes

2 threads per core

2 sockets (56 cores per socket)

Sapphire Rapids-SP architecture

Caches:

L1d: 5.3 MiB (112 instances)
L1i: 3.5 MiB (112 instances)
L2: 224 MiB (112 instances)
L3: 210 MiB (2 instances)
L1 & L2 – per core
L3 – per socket

A CPU in one socket:

(CHA & LLC – Caches, UPI – Interconnect for
sockets)

The output from ”hwloc-info”:
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Compute Node GPU

Overview:

NVIDIA H100 80GB (HBM3)

8 GPU’s per node

80 GB VRAM

132 SM’s

128 CUDA 32 bit cores per SM (or 64
CUDA 64 bit cores)

16,896 cores per GPU

4 warp schedulers, 64 warps/SM

maximum 2048 threads per SM

Compute Capability 9.0

Caches:

L1 + shared memory 256 KB
L2 Cache 50MB

Clock frequency: 1.5-1.8 GHz

Tensor core:

Specialized cores for matrix multiplication
and accumulation

Useful in Deep Learning

3 times more through put than A100 in
FP16
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Enroot Containers
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Introduction and Configuration

Introduction:

Enroot gives an isolated filesystem
and environment variables for the
applications.

Similar to ”chroot” command of
Linux, but Enroot comes with ability
to import and export containers.

It has builtin GPU and Infiniband
support through hooks and libraries.

Mounts the user’s home directory,
(and hence scratch directory too).

Cgroups of the host are transparent
inside the container, enabling
scheduler to control the resources.

Enables unprivileged users (non-root
accounts) to install their packages as
part of the container, and distribute
the image.

Configuration in ASPIRE 2A+:

It shows that the enroot is mounted on
”/raid/local/containers”.

The scheduler has a hook that creates
mount points under the job-id.

These folders with job-ids as names will be
deleted by the scheduler after the job.

Configured by default to mount $HOME
(hence $HOME/scratch too).
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Importing an Enroot Image

Importing

The common strategy to build an image is to start from a base-image that could be to import a
docker image from NVIDIA NGC Catalog: https://catalog.ngc.nvidia.com/.

Get the URI:

> On a browser visit https://catalog.ngc.nvidia.com/
> Go to ”containers”
> On the search field enter the package name, for example, PyTorch.
> Click the PyTorch link followed by ”tags”
> Copy the link of the image. For example, nvcr.io/nvidia/pytorch:24.12-py3.

Get the command prompt: Use the login node if there not going to be heavy compilation
or installation, else get a compute node by submitting an interactive job through qsub -I.

Execute: ”enroot import docker://nvcr.io#nvidia/pytorch:24.12-py3”. Note the
change of a ”/” to ”#”.
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Importing an Enroot Image and Creating the Container

This gives the image as squashfile as shown below:

Creating the container

Get a compute node by submitting an interactive job.

Then, the container can be created from the squash file using the following synopsis:
”enroot create --name mycontainer pytorch:24.12-py3.sqsh”.
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Creating and Starting the Enroot Container

This gives the image as squashfile as shown below:

The command ”enroot list” will show ”mycontainer” as its result.

Starting the container as a root with write permission

Execute ”enroot start --root --rw mycontainer”

The options ”--mount folder/path/in/host:folder/path/in/container” can be used
to mount any other folders.

The options ”--env VAR NAME=VALUE” can be used to export an environment variable,
”VAR NAME” with value, ”VALUE”.

Execution of ”enroot start --root --rw mycontainer” results in the command prompt
inside the container as in:

Now we are nearly all set for installation in the system directories of the container.
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Proxy Setting and Installation Using APT in Container

Set the following proxies when you are in the command prompt of the container:
export no proxy=localhost,127.0.0.1,10.104.0.0/21

export https proxy=http://10.104.4.124:10104

export http proxy=http://10.104.4.124:10104

Now let us proceed to install a game, ”rolldice”.

Execute:

apt update && apt upgrade

apt install rolldice

/usr/games/rolldice 3d6

This gives (a random number from 3 to 24) during my each run as follows:
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Upgrading PIP and Installing a Python Package

Executing python -m pip install --upgrade pip gives:

Executing pip install geopandas installs the package GeoPandas:
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Exporting the Container as a Squash Filesystem

To export the container after installation, first exit the container, by executing
exit. The will take us back to the command prompt of the host compute node.

The command enroot list will show the container, which is mycontainer in our
case.

Executing enroot export -o /images/test.sqsh mycontainer gives:

For the material on how to use Enroot for running commands in batch jobs, please see
the slides of Introductory workshop.
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PyTorch Distributed Data Parallel
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Introduction

DDP class from the module torch·Distributed is used for parallelizing training in
multiple GPU’s.

Uses multiple processes like MPI. Recommended: One process for each GPU.

Each process does deep-learning using a replica of the model: Hence, Data
Parallelism via Single Program Multiple Data (SPMD) paradigm.

The model should be small-enough to fit into each single GPU.

Uses collective-communication functions from Torch•Distributed module, which is
generally chosen to be NCCL in the backend.

The collective communications are used during back-propagation to synchronize
gradient across all processes.

Faster than Torch•Dataparallel, since the latter uses only threads, and thus suffers
from locking to avoid race-condition.

Pytorch DDP is launched using ”torchrun”, which spans the specified number of
processes.

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 17 / 106



Basics of Deep Learning (DL)

A DL model could have
100’s of layers.

Input layer data are features
of each sample.

samples can be bunched
together as batches.

The output layer predicts.

Loss = A positive norm of
(prediction - targe label).

The W’s and b’s are the learnable parameters.

The σ() is the activation function or ”switch”.

Various paradigms: MLP, CNN, RNN, & GNN.

Problems: Classification, regression, segmentation
& generation

Image credit: https://tikz.net/neural networks/
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Basics of Deep Learning (DL) (continued · · · )

Different types of layers:

1D,2D,3D convolution and
transposed convolution layers

Pooling (eg, maxpool,
maxunpool,average in 1-3D)
and upsampling and padding
(eg. zero padding, reflection)
layers.

Normalization (eg. batchnorm)
layers.

Activation functions (eg.
sigmoid, tanh, ReLU)

Recurrent layers (eg. LSTM,
GRU)

Linear and dropout layer

various loss functions (e.g.
MAE, MSE, cross entropy)

Applications:

MLP: Suitable for table data: forecasting,
estimation (interpolation in
multi-dimension), classification, pattern
recognition. [Reference:
http://www.lx.it.pt/ lbalmeida/papers/AlmeidaHNC.pdf]

CNN:Image classification, segmentation,
video and audio analysis, time series analysis

RNN: Time series prediction, natural
language processing. [Reference: (latest review
article)
https://www.sciencedirect.com/science/article/

pii/S1319157824001575].

GNN: Analysis of connected data, network
analysis such as social networks, urban
planning, fraud detection, business
forecasting, etc. [Reference:
https://arxiv.org/pdf/2504.07645 and references

thereof.].
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End-to-end Machine Learning Pipeline

Backpropagation (termed as backward pass) in PyTorch is the crucial step that
determines how much the learnable parameters changed.

Typically training is based on a subset of dataset, training set.

Epochs should be rightly set to avoid over-fitting.
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PyTorch DDP and NCCL

Pytorch DDP can use NCCL,
Gloo or MPI for communication.

In ASPIRE 2A+, NCCL library is
available, and recommended by
PyTorch.

NCCL offers both point-to-point and
collective communication functions.

PyTorch DDP uses all-reduce and
broadcast functions of NCCL.

Broadcast is used for state-dictionary in
rank 0.

All-reduce is used for synchronizing
gradients during back propagation.

The reduction operation is mean on the
gradients in all GPU’s.

All-reduce

Broadcast
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PyTorch DDP Design: Step-by-Step Operation Method

DDP uses Pytorch library c10d.

c10d could use NCCL backend.

c10d forms the process group.

DDP version of the model is created
as instance by passing the model as
an argument to the DDP class’s
constructor.

Process ranked ”0” broadcasts the
”state dict()” of the model at each
step of every epoch.

Forward pass in DDP model is same
as that of the original model

During back propagation, the
gradients are bucketed before
reduction by mean across all GPU’s.
This is to minimize the number of
communications.
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Torchrun: An Utility to Launch PyTorch DDP Workload

The previous example had used the Python
module Multiprocessing which spawned the
processes. Now we will see Torchrun.

Advantages of Torchrun:

Ranks are allocated automatically.

If processes in a node fail, the
processes in other nodes can keep
running without killing the whole job.
This is when the ”elasticity” property
is enabled by giving minimum and
maximum for the number of nodes.
An useful feature, since the budget to
run in GPU is expensive, and one
can’t afford to waste it.

when the node becomes available
again, the exited processes are
automatically restarted.

Common usage:

This command is passed through job
script in ASPIRE 2A+ unless run in
interactive mode.

–max-restarts=3 means that the
exited groups could be started
maximum three times.

–nprocs-per-node is set to the
number of GPU’s asked for in the job
script per node.

–nnodes=2, for example, means that
the 2 nodes are going to be used.
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Torchrun: DDP Launcher (continued· · · )

In the context of environment in ASPIRE
2A+, the following options apply.

–rdzv-backend=c10d means that
c10d has been chosen as the
process-group former.

–rdzv-id=$PBS JOBID. This gives an
id for the process group that takes
part in the cooperation.

–rdzv-endpoint=”$(head -n 1
$PBS NODEFILE):29555” The
rendezvous end-point decides where
to base the backend, c10d. Here it
has been chosen as the hostname
appearing in the first line of the
node-file generated by the scheduler
for the job. The number following the
”:” refers to the port number of
choice for communication.

This is usually done as shown in the figure
below.

The following environment variables will be
made available by torchrun for the pro-
grams to access.

RANK Global rank.

LOCAL RANK local rank within the
node

WORLD SIZE total number of
processes in the group.

LOCAL WORLD SIZE number
processes in the node.
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Torchrun: DDP Launcher (continued· · · )

For an example, the usage of the environment variable LOCAL RANK:

Best practices

Batch size could be highest possible
for making use of a larger SM
occupancy and utilization

Dataloader workers: This number can
be sufficiently larger for minimizing
the overhead of loading.

Use prefetch for efficient loading.

NCCL backend is always preferable
for c10d process group’s
communications.

Use Torchrun and choose c10d as the
backend for rendezvous.

Never kill using qdel command. Let
the jobs finish by itself. If you wish to
terminate the job by your will, make
provisions for it in the code to
periodically check for an existence of
a file, and exit (after calling
dist.destroy process group()) when it
exists. Such a file can be created by
you by touch command when you
wish to terminate. Our experience
suggest that NCCL communications
reach a deadlock, causing the
scheduler to get the node offline.
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PyTorch DDP Exercise: MNIST Image Classification

Download a version of CNN model for
image classification from https://yangkky.
github.io/2019/07/08/distributed-pytorch-
tutorial.html (shown on the right) and run
it on 8 GPU’s

Increase the batchsize, and compare
the loss at the end of 40 epochs

Analyze the GPU resource output
from the command ”qstat -xf” in
both cases.

Increase the learn rate and observe
the change in the loss at the end of
40 epochs.

How do you know that you are not
over-fitting?

(Use the case folder provided for this exercise. The curves of training and test
losses could be obtained on login nodes by executing ”%run plot.py” while inside
IPython.)

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 26 / 106



PyTorch DDP Exercise: MNIST with a Different Model

Change the model to the one shown below and plot the performance on the test set. compare it
with the loss curves for the previous model. (Use the provided codes.)

Experiment by changing the batch size and by diminishing learning-rate over epochs.
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PyTorch DDP: Closing Remarks

Some more best practices:

Always address the GPU using the LOCAL RANK environment variable. For example, as in

local rank=int(os.environ["LOCAL RANK"])

device = torch.device(f"cuda:{local rank}")
Always use DistributedSampler class as in

from torch.utils.data.distributed import DistributedSampler

sampler = DistributedSampler(dataset, shuffle=True)

dataloader = DataLoader(dataset, batch size=100, sampler=sampler

If the model is too big for GPU memory:

The DDP is not ideal for this. PyTorch offers another distributed-execution framework for
such large models: Fully Sharded Data Parallel(FSDP).

In this frame work, the each GPU takes part in a serial pipeline, where each operates on
several different layers of the model.

Less efficient than DDP when the whole model can be fit into each GPU.

For an example of using this in an MNIST classification task, see:
https://pytorch.org/tutorials/intermediate/FSDP tutorial.html

Further learning: Follow another version of MNIST classification using DDP in this link:
https://github.com/yqhu/profiler-workshop/blob/main/mnist ddp.py
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Transformers, LLM and FSDP
Parallelization
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LLM’s: Short Introduction

Introduction
LLM’s have revolutionized the world of
AI resulting in a new paradigm of
genrative AI.

Tasks: Quesion answering, sentiment
analysis, language translations, and
sentence completion.

Made possible due to advances in GPU
performance.

Model characteristics
Mostly encoder-decoder type.

Sequence to scalar model applied
recursively to generate a sequence.

Since 2017, the LLM’s are based on
Transformers instead of pure RNN
based blocks that contains LSTM or
GRU layers.

The models are pre-trained in
self-supervised manner on large
quantity of texts using the methods
such as masked-token prediction and
next-sentence prediction).

They are then further trained slightly in
a supervised manner for domain-specific
tasks, and for alignment with socially
accepted norms, ethics and beliefs.

The model sizes varies from few billions
to the order of a trillion learnable
parameters.
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Various LLM’s and Their Sizes

Table credit: https://arxiv.org/pdf/2501.09223
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Transformer Model

A path-breaking framework (”Attention is all
you need” Vaswani et al. (2017))

Full model comprises encoder and decoder.

The encoder contains token and position
embeddings and a series of transformer blocks.

Each transformer block contains normalization,
multiheaded attention and feed-forward layers.

Decoder uses the last time-step’s output as
input.

Then subsequently undergoes self attention
with causality enabled. (masked self attention)

The encoder output is used for cross attention.

skip connections prevent zero-gradient issue.

After series of the transformer blocks, the next
token in the sequence is predicted by a softmax
activation.
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H100 GPU: Transformer Engine with FP8 Support
H100 provides support to Transformer Engine (TE) and
FP8 arithmetic.

TE module provides different types of neural-network
layers capable with FP8.

Useful for Generative-AI tasks that use
transformer-architecture blocks (containing multi-headed
attention and feed-forward networks).

Example:

Transformer layer modules:

FP8 Support:
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LLM: Exercise on Loading a Model, Qwen3-32B-FP8, and
Running Inference

We will load a thinking-model that uses the H100 GPU card’s specialty to use FP8 data-type,
and run inference. One such model is Qwen3-32B-FP8, which is small enough to load into a
single GPU. This model is known to be a highest performer for code generation from prompts.

Step 1: Create a directory under your scratch folder, and change to that directory as below:

mkdir -p /scratch/llm/Qwen332BFP8

cd /scratch/llm/

Step 2: Install Hugging Face hub’s command-line interface using the following command, and
download the model:

pip install -U "huggingface hub[cli]"

huggingface-cli download --local-dir ./Qwen332BFP8 Qwen/Qwen3-32B-FP8

Wait for the model to be saved in your directory.
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LLM: Exercise on Loading a Model, Qwen3-32B-FP8, and
Running Inference (Continues · · · )

Step 3: Submit a request for an interactive job with two GPU’s. Two GPU’s are not needed for
this exercise, but needed later when running FSDP 2 (coverered in later slides): qsub -I -l

select=1:ngpus=2:mem=400gb -l walltime=3:00:00 -P <project id>

The next exercise on FSDP 2 requires latest PyTorch version, so we will use th latest version so
that we can reuse it later.

Step 4: Use ”enroot import” to download a Docker image of latest PyTorch from NGC website
and save it as a squash-file system: enroot import docker://nvcr.io#nvidia/pytorch:25.04-py3

Step 5: Create and start container from the squash-file as below:
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LLM: Exercise on Loading a Model and Running Inference
(Continues · · · )

Step 6: start the container shown in the picture.
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LLM: Exercise on Loading a Model and Running Inference
(Continues · · · )

Step 7: Set proxies to get internet connection inside the container:

export no proxy=localhost,127.0.0.1,10.104.0.0/21

export https proxy=http://10.104.4.124:10104

export http proxy=http://10.104.4.124:10104

Step 8: Install transformers and accelerate: First, pip install transformers. Then, since the
model uses pipeline from transformers library with automatics GPU mapping, we need to install
the Python package accelerate: pip install accelerate. This will install accelerate as
shown below:

Step 9: Since we would like to rn inference by chatting,
go into interactive Python: ipython.

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 37 / 106



LLM: Exercise on Loading a Model and Running Inference
(Continues · · · )

Step 10: In Ipython, given the following sequence of commands to see the response from
Qwen3-32B-FP8:

from transformers import pipeline

model name or path = "/home/users/adm/sup/malikm/scratch/llm/Qwen332BFP8"

generator = pipeline( "text-generation", model name or path,

torch dtype="auto", device map="auto")

messages = [ "role": "user", "content": "Write a short bash script

to greet the participants of ASPIRE 2A+ workshop.", ]

messages = generator(messages, max new tokens=32768)[0]["generated text"]

messages.append("role": "user", "content": "Write the Python version

of the same")

messages[-1][’content’]

This outputs shown in the next two slides.
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LLM: Exercise on Loading a Model and Running inference
(Continues · · · )
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LLM: Exercise on loading a model and running inference
(Continues · · · )
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SGLang: Introduction and Installation

Introduction:
SGLang is a tool to serve an LLM. It is also useful to run benchmarks without serving the
model.

We will use here for benchmarking Qwen3-32B-FP8 model’s latency and throughput.

This model is already with FP8 datatype. But SGLang model can be used for quantization
for FP8 eventhough the model does not explicitly use it.

Installation:
Start the latest PyTorch container as before.

UV package in a virtual environment will help accelerating Pip based installations. Issue
the following sequence of commands:

pip install --upgrade pip

pip install uv

pip install transformers

pip install accelerate

uv venv

source .venv/bin/activate

uv pip install "sglang[all]>=0.4.6.post5"
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SGLang: Benchmarking an LLM Model

Enter the following command to benchmark a single batch’s latency and
throughput on two GPU’s:

python -m sglang.bench one batch --model-path

/scratch/llm/Qwen332BFP8 --tokenizer-path

/scratch/llm/Qwen332BFP8 --batch 32 --input-len 256 --output-len

32 --tp-size 2
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SGLang: Benchmarking an LLM Model (Continued · · · )

Enter the following command to benchmark the offline throughput on two GPU’s:

python -m sglang.bench offline throughput --model-path

/scratch/llm/Qwen332BFP8 --tokenizer-path

/scratch/llm/Qwen332BFP8 --num-prompts 10 --tp-size 2
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Introduction to FSDP

FSDP class from the module torch·Distributed is another tool for process based
parallelization on multiple GPU’s besides DDP.

Unlike DDP, the replicas of the model do not reside in each process or GPU in this
method.

Each GPU has a shard of the model.

Suitable when the model is too big to fit into a GPU.

Like DDP, it too uses collective-communication functions like NCCL.

Like DDP, FSDP too is launched using ”torchrun”, which spans the specified
number of processes.

Introductory materials:
https://docs.pytorch.org/tutorials/intermediate/FSDP tutorial.html
https://docs.pytorch.org/docs/stable/distributed.fsdp.fully shard.html
https://docs.pytorch.org/docs/stable/distributed.tensor.html
https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md
https://github.com/pytorch/examples/tree/main/distributed/FSDP2
https://arxiv.org/abs/2304.11277
https://www.youtube.com/watch?v=By O0k102PY
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FSDP Sharding
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sharded if small in size. In this case the
layer gets replicated across the GPU’s.

Sharding means communication
overhead.

All-gather and reduce-scatter are the
collective communications used.
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Two methods: FSDP1 and FSDP2

FSDP1 may become deprecated.

FSDP2 uses DTensors (distributed)

No sharding policies in FSDP2: use ”if”
conditions on the type of layers.

More on diff. between FSDP 1 and 2:
https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md

FSDP2 uses fully shard() as the
constructor.

Image credit: https://arxiv.org/abs/2304.11277
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FSDP: Sharding, Unsharding and Computation Overlap
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FSDP is DDP + more
communications.

All-gather makes it pos-
sible to make each shard
equivalent to the full
model momentarily for
the layer of active compu-
tation at a chosen time.

After computations in a
layer, it is resharded.

Communication between
processes overlap in time
with the computation in
them. See the figure on
left bottom. Image credit:

https://arxiv.org/abs/2304.11277
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FSDP 2: fully shard()

fully shard(module, *, mesh=None, reshard after forward=True, shard placement fn=None,
mp policy=MixedPrecisionPolicy(param dtype=None, reduce dtype=None, output dtype=None,
cast forward inputs=True), offload policy=OffloadPolicy(), ignored params=None)

Bottom-up sharding: If a module
contains nested submodules, the
fully shard() should be applied to the
inner-most submodules first, and then
progressing to parent modules until the
root (outer-most) module.

prefetching: During the forward and
backward pass, the next-layers’
parameters need to be all-gathered while
the computation on current layer is
going on. There are methods available
for specifying the number of layers.

Hybrid- and full-sharding: The ”mesh”
argument above in the constructor can
be used to specify which rank should
contain shards, and which ranks should
contain the replica of existing shards.

Mixed-precision policy: This argument
in the constructor can modify the
data-types of parameters and gradients.

Offload policy: The default setting
”offload policy=OffloadPolicy()”
disables CPU offloading.
offload policy=CPUOffloadPolicy()
enables it. It uses CPU RAM as a swap
space for storing the sharded parameters
of inactive layers.

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 47 / 106



FSDP: Example

As a demonstration, let us do an example available on PyTorch’s official tutorial.

Create and Start the latest PyTorch container on two GPU’s through an interactive job as
we did earlier for running an inference on Qwen3-32B-FP8. But, make sure to start with
the environment variable CUDA VISIBLE DEVICES as in enroot start --env

CUDA VISIBLE DEVICES=$CUDA VISIBLE DEVICES pytorch25 04.

Change to scratch folder and download the examples from PyTorch’s Github page: git
clone https://github.com/pytorch/examples

Change to the directory ∼/scratch/examples/distributed/FSDP2.

Note the following in train.py:

Customize the functions for pre-fetching
bottom-top way of applying fsdp() on module layers and the model. (This
example does not use mesh to create replicated FSDP units. )
The option for mixed precision allows the use of different precisions for
parameters (Bfloat 16 bit) and reduce operation (32 bit).

Run the workload using torchrun: torchrun --nproc per node 2 train.py

--mixed-precision --explicit-prefetch

The output is shown in the next slide
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FSDP: Example (Continues · · · )

The model printed from rank=0.
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FSDP: Closing Remarks

If the model is small to fit into a GPU, use DDP. FSDP is inefficient for such
cases.

If Using multidimensional mesh in fully shard(), note that the sharding
happens on ranks given by dim = 0 of the mesh array, and replicated on the
other dimension ranks correspondingly. If using this feature, allowing the
intranode ranks to have shards, and the ranks across the nodes to be
corresponding replicas would enhance performance. This is because, the
inter-node all-gather() communications are absent.

CPU-offloading can greatly reduce the GPU memory footprint of the
workload, thought it will increase the H2D and D2H communications.
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Computations in GPU Using CUDA
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Introduction

Massive parallelization. High throughput calculations

More than 250,000 threads in H100. 138 SM’s, each with 128 CUDA cores.

CUDA is an extension to C/C++ (by header file cuda runtime.h and library).

CUDA gives a framework to define the functions that need to be executed in GPU.
These functions are called CUDA kernels

Memory management functions: allocation, movement between GPU and CPU, and
releasing the memory in GPU.

Provision of thread and block specific indices to identify them. threadIdx.x,
blockIdx.x, blockDim.x, gridDim.x

Libraries for scientific computations. cuBLAS, cuDNN and cuFFT.
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Introduction (continues · · · )

Qualifiers for kernels callable from CPU
and GPU: global and device .

Qualifiers for allocations of sharable
variables within the block (i.e. within
SM). sharable .

Device selection:
cudaSetDevice(0) // Sets to device

to 0 GPU
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Introduction (continues · · · )

CPU: Low Latency, GPU: High throughput.

GPU needs more time to spawn threads, but it can spawn thousands.

H100 has more than 16,000 cores.

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 54 / 106



SIMT vs SIMD

SIMT and SIMD both are data
parallelism

Since CUDA cores lacks exclusive
caches for each, the threads are
operated in locked steps.

If there is no if conditions,
SIMT is most efficient.

When there are if conditions,
the branching is handled through
masking.

The threads are executed in CUDA cores
grouped into a size of 32. Each group is
known as a warp.

If the if condition is true for all threads in
a warp, and false for all threads in
different warp, the idling time of threads
in each warp is avoided.

If a warp would be idle waiting for memory
access, it will be replaced in their CUDA
cores by a different warp.

Image credit: https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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Common Flow of CUDA Programs

1 Define the kernel function outside ”main()” function.
2 In the ”main()” function,

1 Declare CPU variables and pointers to the memory in GPU.
2 Allocate memory in GPU using the pointers.
3 Copy from CPU to GPU the contents of variables required by kernel.
4 Launch the kernel in GPU from CPU.
5 After the calculations in GPU, copy the result from GPU memory to CPU

memory.
6 De-allocate the GPU memory to avoid any memory-leaks.
7 continue with CPU workload if any.
8 Finally, de-allocate the dynamically allocated memories in CPU if any.

3 Load the CUDA module: module load cuda/12.2.2

4 Compile using the command: nvcc -gencode arch=compute 90,

code=sm 90 -o executable name cude filename.cu

5 Run: ./executable name
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Memory Management in GPU

cudaMalloc((void**)&a, size in bytes)
Allocates memory in GPU, and stores the GPU
memory pointer in a CPU memory pointer.
Note, The ”a” should already be a pointer
variable. The ”(void**)” could be avoided in
modern versions of nvcc compiler.

cudaMemcpy(ptr in device, ptr in host,
size in bytes, cudaMemcpyHostToDevice)

Copies the content of size in bytes number
of bytes starting from the memory location
ptr in host to the GPU memory location that
starts at ptr in device.

cudaMemcpy(ptr in host, ptr in device,
size in bytes, cudaMemcpyDeviceToHost)

Same as above, but vice versa.

cudaMemset(ptr to integer in dev, 0, N *
sizeof(int));

Initialize in GPU. In this example, an array
given by its name, ”ptr to integer in dev” (re-
member, array names are already a pointer)
gets initialized by zero.

cudaFree(ptr in device)
Frees the memory in GPU to avoid memory-
leaks.
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Important Keywords that Acts as Specifiers or Qualifiers

global
GPU kernel declaration callable from CPU

device
GPU kernel declaration callable from GPU

host
CPU functions (default)

shared
Memory shared by threads within a ”block” (see next slide)

Examples

global double* kernel callable from CPU (double* arr) { · · · } . A
function that takes in a double precision array and returns another such.

device double* kernel callable from GPU (double* arr) { · · · } . Same as
the above but callable only inside another GPU kernel.

shared double Array accessible by all thread[10,000]. All threads can access,
but possible for race. Use synchronization when needed.
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Memory Allocation for Functions for 2D and 3D Arrays

2D array: cudaMallocPitch()

Here, ”pitch” has the same meaning of
”stride”. The memory size that need to be
traversed when an index of an array in a di-
rection is incremented by 1. In this example,
it refers to the case when row is incremented.

3D array: cudaMalloc3D()

”slicePitch” refers to the amount of memory
to be traversed when the z-direction index
increments by one.

The code is from:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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Threads, Blocks, Clusters in grid

A ”block” is a group of threads. Blocks binds to different SM’s by default. H100
can contain up to 2048 threads in a single block.

Thread and block indices are 3-tuples to facilitate working with 3D arrays.
Example: threadIdx.x, blockIdx.x. The ”x” here can also be ”y” or ”z”.

There is an in-built 3-tuple datatype for declaring number of threads and blocks for
the kernel functions in each direction: dim3 . Example: dim3 blocks(4, 4). Here
the no. of blocks in ”z” direction defaults to 1.

Dimensions of a block are the number of threads in each direction. blockDim.x,
blockDim.y and blockDim.z

Computations in each block is independent of other blocks. Mostly data
parallelism: SPMD

It is best to synchronize the threads whenever a new set of calculations are going to
begin on the shared memory. Intrinsic function syncthreads() (”Intrinsic” means
low-level instruction with high performance.)
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Launching CUDA Kernels and Grid

Kernels are launched in a grid using triple
angular brackets containing the block and
thread dimensions. Example:

dim3 blocks(4, 4);

dim3 threads(16, 16);

myKernel<<<blocks, threads>>>(...);

The grid dimension in each direction gridDim.x,
gridDim.y, gridDim.z (blocks in the grid).

The grid dimension is not used in kernel launch.

H100 also supports ”clusters”: A grid of blocks.
Grid dimensions needed to launch kernels in
clusters.

Image credit:

https://www.3dgep.com/cuda-thread-

execution-model
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A vector as a 1D Thread Block

Consider a vector v of 32 elements.

Split as below:

4 blocks Therefore, gridDim.x = 4 and 0 ≤ blockIdx.x ≤ 3
8 threads in each block. Therefore, blockDim.x = 8 and 0 ≤ threadIdx.x ≤ 7

Then, indexing in eqch block:
int index = threadIdx.x + blockIdx.x * blockDim.x
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Vector Addition Using CUDA

Defines the kernel to
perform vector
addition by using
thread and block ids.

Allocates memory in
GPU from the host
function.

Copies buffers

calls the kernel

copy back to CPU

Frees memory

Exercise: Compile and
run this code.
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CUDA Functions for Performance Measuring

Snippet for measuring GPU kernel time:
cudaEvent t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start);

vectorAdd <<< nblk, nthrd >>> (· · · );
cudaEventRecord(stop);

cudaEventSynchronize(stop);

float ms;// ms stores time in "ms"

cudaEventElapsedTime(&ms, start,

stop);

Measuring occupancy:

Occupancy = 100 x no. of active warps /
max warp
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H100 Specific CUDA Enhancements: TMA

H100 cards have specific hardware to
carry out memory movements from
global memory to the shared memory
of thread blocks.

From the global memory of each
GPU, copying the rows or columns of
array (i.e., the data section of the
object ”Tensor”) to the shared
location within a block requires
strided copying. (Strides are briefly
introduced in the section for MPI).

H100 GPU has a special method
known as Tensor Memory Accelerator
to do these strided copying to each
block’s shared locations through
dedicated hardware different from
CUDA cores.

These operations are asynchronous.

Advantages:
1. CUDA cores not used for this.
2. Better overlap of compute and copy.

Use cases:

Deep Learning (cuDNN library )
Computations on a stencil of grids
Linear Algebra (cuBLAS) and
spectral problems (cuFFT)

Figure credit: https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
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H100 Specific CUDA Enhancements: TMA Example

Loading a tile (i.e. a rectangular section) of a matrix from global memory
to shared memory:

Without TMA:

TMA: Requirement and enabling:

Use -arch=sm 90a as the compiler
flag.

Needs CUDA versions 12.x

With TMA:
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Best practices

De-allocate all unwanted memories.

Memory Pooling: If reusing a memory
of one variable is possible for a new
variable, it is better than a new
allocation. This avoids overhead and
fragmentation of address space.

Coalesced access: Make sure to get
the adjacent threads act on
contiguous parts of memory with
”stride=1”. This will help with the
cache memory for each thread block.

Use shared memories of thread-block
for faster access.

Pin the CPU memory and use
asynchronous methods for memory
movements.

Use multiple CUDA streams for a better
overlap between compute and copy
operations.

Use CUDA-optimized libraries such as
cuDNN, cuBLAS, cuFFT, cuSOLVER,
cuRAND, and NCCL.

If doing Checkpointing, use a separate
stream to have a better overlap with the
streams for compute kernels. It is best to
use /raid storage via GPUDirect for this
purpose. This will reduce the overhead of
memory movements through CPU.
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Closing Remarks for the Workshop

Avoid CPU only jobs. ASPIRE2A+ requires GPU’s to be used in all job submissions.

It is recommended to use most of the GPU memory. In deep-learning workloads, this
possible by increasing the batch size, beside the model size. Increasing the batch size could
allow you to use large learning rates initially, saving the GPU time considerably.

Make sure to reach a highest possible SM-utilization rate (reported by the job output).
This can be achieved by increasing the model size in the case of deep-learning applications.
In pure CUDA codes, this can be achieved by increasing the problem size, by using several
streams, and by getting the memcpy to overlap in time with kernel jobs.

Do not mention a container in the job script if it is not used by the job. This will increase
unnecessary IO on the /raid storage.

Make sure to load the right modules and mention the path sequence in a manner right
versions of the software are used. For example, you may want to use your local Python, but
the system Python may be preceding in the PATH variable.

If not using the obtained interactive session through qsub, make sure to release it to
facilitate the usage by other users.

Avoid submitting sleep jobs to hog the node. It will reduce the efficiency the system,
besides depleting the SU allocation for the project.
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OpenMP: Introduction and Processor
Bindings
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Introduction

Features

Parallelization using threads: Threads share single process

Works on shared memory: All threads can access all variables, but some of them
could be thread-private

Uses compiler directives: Switch between parallel & serial versions at compile time
without a need to change the codes.

Environment can controls the number of threads unless overridden by directives

Drawbacks

Not suitable for distributed memory

Race condition by threads to access same address location if programmed badly

Thread synchronization could slow-down executions.
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Shared Memory

OpenMP exploits shared-memory architecture of multiple CPU’s in a single
node

When the number of threads (T ) is less than number of physical cores (P),
i.e., T ≤ P, each threads binds to the physical cores. If 2P ≥ T > P, then
the threads binds to logical cores (hardware threads).
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Fork & Join and Shared & Private Memories

Single Program Multiple Data (SPMD) parallel is most common with OpenMP.

Master thread: Thread id = 0

Forks in parallel region and joins
as it finishes

Forking can be nested

Threads can have local
memories

Mostly uses shared memory

synchronization is needed when
accessing shared data
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Sample Code: Pragma, Parallel & Parallel For

The iteration index is thread-
private by default.
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OpenMP Processor Binding to Enhance Performance

Set the environment variable,
OMP PROC BIND=true

The threads can be bounded to
be closer to each other, or
spread out to all physical cores.

#pragma omp parallel proc bind(master) binds all threads to the single core

#pragma omp parallel proc bind(close) binds threads such that the the
threads with adjacent thread-id’s are closer to each other

#pragma omp parallel proc bind(spread) binds threads such that the the
threads with adjacent thread-id’s are spread to the whole range of available
CPU core id’s.

If the data that each thread works on is closer to memory,
proc bind(close) could benefit by avoiding cache misses.
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OpenMP Processor Binding: OMP PLACES

OMP PLACES controls how the CPU’s including hardware threads are
numbered

OMP PLACES options: threads, cores, sockets, or list convention

These following options are equivalent for cores having 4 hardware threads

export OMP PLACES=threads
export OMP PLACES=”threads(4)”
export OMP PLACES=”0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15”
export OMP PLACES=”0:4,4:4,8:4,12:4”
export OMP PLACES=”0:4:4:4”

#pragma omp parallel proc bind(spread) binds threads such that the the
threads with adjacent thread-id’s are spread to the whole range of available
CPU core id’s.

If the data that each thread works on is closer to memory,
proc bind(close) could benefit by avoiding cache misses.
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Using OMP PLACES

Chosen parameters:

Five threads

proc bind(spread)

OMP PLACES=cores

Output on a compute node with:
1 socket, 14 cores, and
2 hardware-threads in each core
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proc bind() vs OMP PLACES

Threads = 5; cores = 14; hardware-threads = 2; socket=1

proc bind(spread); OMP PLACES=cores proc bind(spread); OMP PLACES=threads

proc bind(close); OMP PLACES=cores proc bind(close); OMP PLACES=threads
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Sample Application Using OpenMP: Eigen and PLASMA

Eigen package uses OpenMP for matrix multiplications. Following is a snippet
from ”Eigen/src/Core/products/Parallelizer.h”.

Another linear-algebra package that uses OpenMP is PLASMA:
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Scalability of thread parallelization using Eigen package

Matrix multiplication using Eigen:

Data type: complex double

No. of flops. Nflops ∼ O(n3) for

multiplying two n × n matrices. In

general, the time, t ∼ Nflops.

Case 1: n = 2000, Nthreads = 1

Case 2: n = 4000,Nthreads = 1

Case 3: n = 4000,Nthreads = 8

When n is doubled, time t ∼ 23, since Nflops ∼ O(n3).

But when Nthreads is multiplied by 23 in case 3, the

time does not reduce to that of Case 1. This shows

the sub-linear scaling.
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OpenMP: Closing Remarks

Race-condition and conflicting memory updates are common issues while
using threads.

ASPIRE 2A+ compute nodes have 112 physical cores each with 2 hardware
threads. Each node also have 2 sockets. These should be considered when
declaring OMP PLACES.

Binding threads that access data located closer in memory enhances
performance.

compiler optimization flags ”-O3” and ”-O2” can improve the
thread-parallelized codes better than MPI-parallelized codes, since former
mostly uses threads on loops, which are highly susceptible for optimization by
these flags.
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OpenMP: Closing Remarks (Continued · · · )
if the data of two threads are different objects altogether, best to spread
them out to enhance the performance. In this spreading to far enough cores
will make use of NUMA feature. (ASPIRE 2A+ has two NUMA regions in
each compute nodes, one for each socket.)

Cores’ NUMA bindings:
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MPI: Introduction and Processor Bindings
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Introduction

Features

Parallelization using multiple processes (like separate applications) instead of
process-id-sharing threads: Processes can be on different nodes

Commonly used in distributed-memory clusters, though it works with shared
memory as well: Variables are exclusively accessible by their respective processes;
Sharing is only possible by message passing.

Uses libraries, not directives: Example implementations: Open MPI, MPICH,
MVAPICH, Cray MPICH, etc.

ASPIRE 2A+ uses Open MPI (default version 4.1.2. Alternative: 5.0.5)

Drawbacks

Extensive code modification on a serial code, if decided to parallelize using MPI.

In shared-memory machines, communications increase overhead when compared to
OpenMP.
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MPI Communication

Image credit: https://github-pages.ucl.ac.uk/research-computing-with-cpp

MPI communications (red
arrows) move copies of
data between nodes via
high-speed interconnect.

The interconnect is
Infiniband in ASPIRE
2A+.

Three types:

1 Point to point,
2 Collective, and
3 One-sided (through

RMA window)
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Point-to-Point and Collective Communications

Point-to-Point: Collective Communication:

Uses send/receive API calls.

Destination and Source ranks are
mentioned

Each call is communication
between only a pair of processes

It can be a blocking or
non-blocking communication.

Image credit: https://hpc.nmsu.edu/discovery/mpi/introduction/

Synchronization by a barrier

Broadcasting, gathering and
scattering operations.

Reduction across the processes via
a reduction operation.

Image credit:

https://hpc-tutorials.llnl.gov/mpi/collective communication routines/
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Defined Datatypes for Sending Sections of Arrays

Sending non-contiguous parts of memory will need loops with primitive datatypes.

This will result in communication overhead hitting the performance.

Solution: Group non-contiguous parts of memory by ”Defined Datatypes”.

For example, the defined-datatypes can be used to define the each half of a matrix:

M =



M1,1 · · · M1,n

...
. . .

...
M(n/2),1 · · · M(n/2),n

M(n/2+1),1 · · · M(n/2+1),n

...
. . .

...
Mn,1 · · · Mn,n



This type of ”defined-types” are used in
the code ”matmult mpi 4 nodes.cpp”
and in ”matmult mpi 16 nodes.cpp”.
Relevant portions are shown as a snippet
in the next slide.

Note: Each half shown here are con-
tiguous in memory in ”row major” stor-
age convention (a default in C/C++),
but not in column-major storage conven-
tion (which is default in Fortran and in
a C++ package, Eigen).
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Defined Datatypes for a Sub-array: Example

This example uses
column-major storage
convention.

See the codes ”mat-
mult mpi 4 nodes.cpp”
and in ”mat-
mult mpi 16 nodes.cpp”
for how they are used.
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MPI Process: Slots and Processing Elements(PE)
Slot: Unit of allocation of resources.

Default: cores. If ”-use-hwthread-cpus” flag used: hardware threads
If ”-np” is omitted, the number process will be same as the number of MPI
processes mentioned in the job script.
The No. of slots on a node can be greater or less than the number of cores.
Determined by scheduler by ”mpiprocs” value in the PBS job script.
slot information is given by - -display-map or - -display-allocation flags.

Process Element (PE):

Default: core
If ”-use-hwthread-cpus” flag used: hardware threads
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MPI Process Binding Using - -map-by and - -bind-to

- -map-by The category (core, hwthread, or node, socket, etc) by which the
location is changed when the process rank is changed.

- -map-by core, for example, changes by core-id when process rank is changed by
one.

- -map-by hwthread changes by hardware thread when the process rank is changed.

- -bind-to Instructs which collection of hardware need to be allotted for each
process rank.

- -bind-to core tells the process rank to use all hardware threads of the core where it
is located.

- -bind-to hwthread tells the process rank to use only one hwthread at the location
it has been put by the ”- -map-by” flag.

The example usage is, mpirun -np 4 –display-map –map-by core –bind-to core ./a.out
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MPI Process Binding Using - -map-by and - -bind-to
(continued · · · )

mpirun -np 4 –display-map –map-by core –bind-to core ./a.out.

In this screenshot, the letter ”B” signifies the ”Bound” region of hardware
threads for each rank.

mpirun -np 4 –display-map –map-by core –bind-to hwthread ./a.out.
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MPI Process Binding Using - -map-by and - -bind-to
(continued · · · )

mpirun -np 4 –display-map –map-by hwthread –bind-to core ./a.out.

mpirun -np 4 –display-map –map-by hwthread –bind-to hwthread ./a.out.

These options can also be performed with respect to NUMA nodes. However, in ASPIRE 2A+,

Each node has only 2 NUMA nodes (opposed to 8 in ASPIRE 2A). Therefore, using ”numa” as

the parameter is in effect same as that of using ”socket”.
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MPI Process Binding using - -map-by and - -bind-to
(continued · · · )

mpirun -np 4 –display-map –map-by slot:PE=3 –bind-to core ./a.out.

The program uses two threads for matrix multiplication. None of the above
combinations allotted two physical cores for these threads. This will become
possible only when each MPI process is given two
physical cores. This is achieved by this combination of ”map-by” and ”bind-to”

exercise: Compile matmult mpi 4 nodes.cpp and
matmult mpi 4 nodes.cpp using mpic++ and run using mpirun with
various combinations of ”–map-by” and ”–bind-to” options. Also try with
”–cpu-list <comma separated list>” option.
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MPI: Closing Remarks

Extra care is required with hybrid code that uses MPI and OpenMP. The
MPI processes must be allocated at enough distance to make way for threads
in each MPI process.

Non-blocking communications must be used with care. Always call
MPI Wait() or similar functions before working on the received data.

The commands

lstopo –pid $(pgrep <executable> | head -<number from 1 to n>), or
ps -eo pid,psr,comm | grep <executable>

could show/list the CPU’s being used. (The command ”lstopo” would not
work on compute nodes a present since the X11 forwarding is forbidden).

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 93 / 106



Thank You
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Appendix
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Sample MPI Send & Receive Code

Compilation and Running
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Sample Code for Collective Communication

In this code a vector of
four elements is split into
two halves and scattered
to two nodes. Therefore,
it needs to be run with 2
MPI processes as shown
below.

Compilation and Running
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OpenMP: Important API Functions, Directives,
Environment Variables

OMP NUM THREADS=10
Sets number of threads

omp set num threads(10)
Sets number of threads; Supersedes
$OMP NUM THREADS

omp get num threads()
Gets the number of threads

omp get thread num()
Gets the thread-id

omp get wtime()
Gets wall-time from an arbitrary reference
instance. May vary between threads

#pragma omp parallel
The scope that follows will be executed on
all threads

#pragma omp parallel private(var1, var2)
var1 and var2 becomes thread-private

#pragma omp parallel shared(var1, var2)
All threads shares ”var1” and ”var2”

#pragma omp parallel for
The for-loop that follows will be split ad ex-
ecuted on all threads
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OpenMP: Important API Functions, Directives,
Environment Variables

#pragma omp critical
Threads will execute the scope in a
queue; appears inside a parallel scope

#pragma omp atomic
Threads will execute the following value
update to a shared variable in a queue;
appears inside a parallel scope

#pragma omp master
Execution only on thread-id=0

#pragma omp barrier
explicit barrier point in the code for all
threads to arrive before proceeding to
next statement

#pragma omp single
Execution by one thread only. Implicit
barrier implied at the end of its scope

#pragma omp ordered
When mentioned inside a parallel region,
the region marked by this directive will
be run sequentially
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OpenMP: Important API Functions, Directives,
Environment Variables

#pragma omp parallel default(shared)
All variables in the threads are shared

#pragma omp sections
A non-iterative parallel section where sub-
sections marked ”section” are executed in
each thread

#pragma omp section
Section that need to be executed by
one thread. Placed inside the scope for
”#pragma omp sections”

#pragma omp task
Task that need to be run by a thread in the
parallel scope started earlier

The ”tasks” could be executed in any order and at anytime by the processor

During iteration over array elements group the operations related to each
object in one or fewer locations in the code if possible. This will help avoid
cache misses.

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 100 / 106



Clauses for ”omp parallel for”

nowait
Removes the implied barrier at the end of the ”for”
loop

schedule(static) nowait
Same as the above, but the iteration index of the
”for” loops becomes global among threads

reduction(+var)
variable var at the end of each thread will be summed.
(*, -, || and && are other allowed reduction opera-
tions)

private(var1, var2))
var1 and var2 are thread-private initialized randomly

firstprivate(var1, var2))
var1 and var2 are thread-private initialized with values
in the master thread before forking

lastprivate(var1, var2))
var1 and var2 are thread-private with final value in
the master thread equal to that of the last executed
thread

collapse(2) private(i,j,k)
collapse the next two nested for-loops into a single
loop and parallelize
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Important MPI Setup and Query Functions

MPI Init(&argc, &argv)
Initialize MPI

MPI Finalize()
Call the destructor of MPI

MPI COMM WORLD
Default communicator with all ranks

MPI Comm rank(MPI COMM WORLD, &r)
Get the rank in variable ”r”

MPI Comm size(MPI COMM WORLD, &n)
Get the no. of processes in variable ”n”

MPI initialized(&flag), MPI finalized(&flag)
Check whether MPI initialized or finalized

MPI Type size(datatype, &size)
Get the size in bytes

MPI Wtime()
Get the time from a reference time as double

MPI Abort(MPI COMM WORLD, 1)
Abort with error code 1
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Important MPI Point-to-Point Functions

MPI Send(&buf, count, type, dest, tag,
MPI COMM WORLD)

Send ”count” number of data of type ”type”
to the rank, ”dest” with tag, ”tag”.

MPI Recv(&buf, count, type, source, tag,
MPI COMM WORLD, &Stat)

Similar to the above, but from the rank
”source”

MPI Sendrecv(&sendbuf, sendcount,
sendtype, dest, sendtag, &recvbuf,
recvcount, recvtype, source, recvtag,
MPI COMM WORLD, &status)

MPI Send and MPI Recv combined

MPI Isend(&buf, count, type, dest, tag,
MPI COMM WORLD, &request)

Nonblocking send; Does not wait for the re-
usability of send-buffer

MPI Irecv(&buf, count, type, source, tag,
MPI COMM WORLD, &request)

Nonblocking receive; Does not wait for the
receive to begin or complete

MPI Wait(&request,&status)
Used in conjunction with non-blocking send
or receive. This blocks until they complete.

MPI Waitall(count, &array of requests, &ar-
ray of statuses)

Same as above but used for many non-
blocking send or receive requests.

Dr Malik M Barakthullah (Fujitsu) Advanced Workshop on Parallel Programming Models April 2025 103 / 106



MPI: Collective Communication Functions
MPI Barrier (MPI WORLD COMM)

Block until all processes call this function.

MPI Bcast (&buffer, count, type, root,
MPI WORLD COMM)

Send to all processes.

MPI Scatter (&sendbuf, sendcnt, send-
type, &recvbuf, recvcnt, recvtype, root,
MPI WORLD COMM)

Divide the memory into parts and send to
the processes one each.

MPI Gather (&sendbuf, sendcnt, send-
type,&recvbuf, recvcount, recvtype, root,
MPI WORLD COMM)

The opposite of MPI Scatter mentioned.
The ”sendbuf” from each process are con-
catenated in the ”root” process.

MPI Allgather (&sendbuf,sendcount,
sendtype, &recvbuf, recvcount, recvtype,
MPI WORLD COMM)

Same as MPI Gather, but the effect is as if
the result is broadcast to all processes.

MPI Reduce (&sendbuf, &recvbuf, count,
type, op, root, MPI WORLD COMM)

Same as the MPI Gather, but the resulting
array elements are reduced by the reduction
operation, ”op”.

MPI Allreduce (&sendbuf, &recvbuf, count,
type, op, MPI WORLD COMM)

Same as MPI Reduce but the effect is as if
its result is broadcast to all processes.
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Matrix Multiplication by Domain Decomposition

Let us consider the matrix multiplication, P = MN, where M and M are n × n matrices
such that n is a multiple of 4. Then M and N can be split into four row and four column
matrices, respectively. Then, we can write P as:

P =


P11

P12

P13

P14

P11

P22

P23

P24

P11

P32

P33

P34

P11

P42

P43

P44

 =


M1

M2

M3

M4


N1 N2 N3 N4

 ,

where each of Pij blocks with i ∈ {1 · · · 4} and j ∈ {1 · · · 4} is given by Pij = MiNj . (Pij ,
Mi and Nj are (n/4)× (n/4), (n/4)× n and n × (n/4) in sizes, respectively.)
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Matrix Multiplication by Domain Decomposition
(continues)

Remarks:

Each of Pij can be computed in an MPI process with rank, r = 4(i − 1) + (j − 1).

Therefore, it can be performed in 16 MPI processes.

Defined datatypes need to be created for Each Mi and Nj and sent to the rank,
r = 4(i − 1) + (j − 1) from rank 0.

After multiplication each of Pij need to be received from rank r = 4(i − 1) + (j − 1)
into the rank 0. For this the defined datatypes for each of Pij need to be created as
well.

Exercises:

Compile matmult mpi 4 nodes.cpp using ”mpic++” compiler and run via a job
script with 4 MPI processes on a single node and note down the time of execution

Repeat it with matmult mpi 16 nodes.cpp on 16 nodes.

Since these codes are hybrid, compile with ”-fopenmp” and repeat.

Analyze the execution times.
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