
ASPIRE2A+ Advanced Workshop
on Profiling and Debugging

Dr Malik M Barakathullah

Fujitsu Managed Services

Classification: RESTRICTED

Contents
1. Profiling Using Nsight Systems 03

2. Profiling CUDA Activities 07

3. Profiling MPI Codes 32

4. Profiling Using NVTX 43

5. Profiling Python Codes including Pytorch Modules 50

6. Debugging Using GDB, CUDA-GDB and PDB 73

Classification: RESTRICTED

1. Profiling Using Nsight Systems

Classification: RESTRICTED

Introduction to Nsight

Nsight Systems

Nsight Compute

Nsight

Nsight comprises:

1. Nsight Systems

2. Nsight Compute

3. Nsight Graphics

(Not covered here)

• Nsight Systems profiles the overall workload

• Nsight Compute profiles the CUDA kernels in detail

Nsight Systems:

• Helps in identifying the bottlenecks

• Shows activities on a timeline

• Profiles various libraries and APIs.

Examples:

CUDA, NVTX ,MPI, OSRT, OpenMP,

CuBLAS, CuDNN, CuSparse

Nsight Compute:

• Reports on SM/memory utilization and clock cycles

• Correlate to the source code

• Gives advice based on pre-set rules

• Provides launch statistics (influenced by grid and block

sizes)

• Provides warp-state statistics (to identify the warp idling)

Classification: RESTRICTED

Introduction to Nsight : Accessing ASPIRE2A+

Nsight is available upon loading a CUDA module

The commands:
nsys Nsight Systems

ncu Nsight Compute

Permissions:

Normal users:

Root permission needed for the following:

• Most of the Nsight Systems’ flags (or options) available

• All of Nsight Compute

• Nsight Systems’ following flags:

• --cpuctxsw CPU context switch

• --gpuctxsw GPU context switch

• --backtrace CPU backtrace

• --cudabacktrace GPU backtrace

• --sample –s Sampling with a frequency

• --ftrace Linux kernel’s function trace

• --gpu-metrics-devices Conflicts with DCGM

• Other flags related to gpu metrics

• Nsight Systems generates an output file

with extension *.nsys-rep, which will need

to be transferred from ASPIRE 2A+ and

visualized locally on your laptop. This is

due to the fact that x11 forwarding has

been disabled on the compute nodes.

• Install the client for Nsight Systems on

your laptop by using

https://developer.nvidia.com/nsight-

systems/get-started

Classification: RESTRICTED

Introduction to Nsight Systems

• Nsight Systems is the profiling tool

from NVIDIA used in ASPIRE 2A+

• System-wide profiling (all

components including computations,

OS runtime functions, code

annotations by the user, memory

access and communications)

• Visualization: Reports can be

visualized to spot the locations of the

code that requires optimization

Visualization Window in local laptop:

• Profile: Launching the application, profiling, and

generating the report in one go.

• Launch, Start and Stop: Used in an interactive

mode for toggling the start and end of the profiling

period while the application is running.

• Analyze: Get a condensed table report on the

screen to quickly view the time spent on CUDA

and memory movements between host and

device

• Stats: Used for generating a detailed table report.

A text equivalent of the timeline view on the GUI.

Useful for parsing and pipelining as input for

further processing on command-line

Important switch options:

Example below uses the switch, “analyze” on a report

generated earlier by profile:

Classification: RESTRICTED

2. Profiling CUDA Activities
Using Nsight Systems

Classification: RESTRICTED

Basics: GPU Memory Hierarchy and Thread Blocks

Classification: RESTRICTED

Thread blocks:

• A thread block can contain up

to 2048 threads in H100.

• Each block is executed in each

SM in round-robin fashion

GPU Memory consists of:

• DRAM (80 GB in H100)

• L2 Cache (50 MB in H100)

• L1 Cache (256 KB in H100):

➢ Located within each SM

➢ A portion of this can be used as Shared Memory

Global memory

Each H100 has 132 SM

L1

Cache

Control

Cores

Warp:

• A group 32 threads executed in locked step

using SIMT parallelism.

• H100 Allows 64 warps per SM

Threads in a block can

share the “shared

memory” address

space, if used with

__shared__ specifier

nsys profile: Example with Vector Addition

Classification: RESTRICTED

Allocate
A, B &

C in
Host &
Device

Assign
A & B in

Host

Copy A
& B
from

Host to
Device

Launch
CUDA
Kernel
from
Host

Copy C
from

Device
to Host

Free A,
B & C in
Host &
Device

Let us consider a simple CUDA application:

Vector Addition C = A + B

The workflow can be described by the following diagram:

A

B

C

A

B

C

Host Memory Device Memory

CUDA

Kernel

Device to Host

Host to Device

nsys profile: Example with Vector Addition

Let us consider the following source code:

This code uses a CUDA

kernel (GPU Compute

function), “vectoradd()”. It

also uses “CUDA profiler

API”.

This code has the following

important operations:

1. Memory allocation in

the host and device

2. Copy two buffers from

host to device

3. Launching kernel

4. Copy a buffer from the

device to host.

5. Freeing the memory in

the host and the

device.

6. The code takes a

parameter from the

command line: the

length of the vectors.

Classification: RESTRICTED

nsys profile

Profiling the code:

nsys profile --trace=cuda,osrt --capture-range=cudaProfilerApi ./vectadd 10000000

switch Options/flags for the switch application Options/parameters

for the application

Compiling the code:

Classification: RESTRICTED

nsys profile: Important Flags

Important flags of profile switch:

--trace

Trace option is used to trace the usage of various API’s in the workload. Examples

include: cuda, nvtx, osrt, cudnn, cusparse, openacc, openmp, osrt, mpi

Example: --trace=cuda,nvtx,osrt

• Selecting “cuda” will cause the profiler to capture the time-ranges spent on memory

movements from host to device, vice versa, and on the CUDA kernels.

• The option NVTX is covered separately in later sides.

• The option “osrt” causes the profiler to capture the usage of OS’s system functions.

• If the option “mpi” is used, it will result in the capturing of the time spent on MPI

communications. By default, OpenMPI implementation for MPI is assumed.

• Similarly the OpenMP API calls also can be captured by specifying “openmp”, but

this requires compilers with OpenMP version 5.0 or later.

Classification: RESTRICTED

nsys profile: Important Flags

--capture-range

• The “capture-range” flag is used to specify a window in the code for profiling the API

calls of CUDA or NVTX. This will result in a report containing the timeline of our

interest. The options for this flag can be: none, cudaProfilerApi, nvtx

Example: --capture-range=cudaProfilerApi,nvtx

• However, note that appropriate “include” directive need to be present in the source

code. (Please refer to the source code provided in the previous two slides)

• The option, --capture-range=cudaProfilerApi tells Nsight Systems to profile the CUDA

API calls specified only between the calls to cudaProfileStart() and cudaProfileStop()

functions.

--delay=600

• Skip the first 600 seconds

--duration=600

• Profile for only 600 seconds

Classification: RESTRICTED

Analysing on GUI: Analysis Summary

Open the generated report “report4.nsys-rep” in the GUI that you have installed as mentioned in slide 4.

Apart from the above information, the “analysis summary” also reports on the

hardware such as CPU, GPU, NIC and on the environment variables

Classification: RESTRICTED

Analysing on GUI: Timeline View of Vectoradd

Three memory

allocations on

the GPU

Two CPU-to-

GPU memory

copy

CUDA Kernel GPU-to-CPU

memory copy

Deallocation of the

GPU memory

Hovering the

mouse over

these will show

the memory

throughputs

and size

CPU Activity

Printing on

the screen

Hover the mouse to get more

information on each timeline items
Classification: RESTRICTED

Analysing on GUI: Diagnostic Summary

The code has run for 164 milliseconds. The warning messages shows inability to capture

certain events due to the absence of root permission to profile CPU and GPU context switches.

Classification: RESTRICTED

Analysis on Command Line Using “nsys stats”

Classification: RESTRICTED

Profiling Vector Addition: Some Reflections

Some observations from the past four slides:

From the Analysis Summary view, we get:

• Host info: hostname and specs of host, GPU device, GPU driver and NIC.

• User info: login id and home folder

• Executable and profiler options: The full command line options used to generate this

report.

• Paths: List of modules loaded, and the paths used for executables and libraries are

captured. Useful for debugging.

• Scheduler info: Path to the working directory and the temporary local storage provided by

the scheduler,

• IB/Ethernet info: The info on NIC contains whether it is IB or Ethernet. This will help in

setting the environment variables for NVSHMEM and NCCL HCA list which should contain

only IB HCA’s for GPU Direct RDMA communications.

Classification: RESTRICTED

Profiling Vector Addition: Some Reflections (cont…)

From the Timeline View:

• Memory vs kernel: The memory allocation, copying from host to device, vice versa, and

deallocation of the GPU memory consumes time far greater than the time required for

kernel execution.

• H2D vs D2H throughput: Copying same size buffer from host to device is several times

faster than device to host. This is because we use synchronous copying which requires

CPU to take part in a role to receive the data from device (GPU). Asynchronous copying

could help speeding this up.

• Kernel time: The time taken by kernel is negligible, implying the Nsight Compute is not

needed for this.

• Memory management has no overhead on CPU: The memory allocation and deallocation

operations are independent of CPU. This is evident from the fact that the CPU is fully

utilized for OSRT functions during these timeframes.

From the stats:

• Sorted by sum: It can be noted from the slide 13 that the stats have been collected for

each type of CUDA activity, for example, cudaMalloc, and sorted by the summed value over

each distinct activities.

Classification: RESTRICTED

Single Thread Multi GPU Single Node Vector Addition

• The code for single GPU vector-addition has been

modified as on the left. This was run using 8

GPU’s.

• The profiled result on timeline is shown at the

bottom of this slide. In the row for “CUDA API”, 8

bursts have been shown, each for each GPU. They

are the replicas (almost) of the single GPU case.

• It should be noted that each device’s memory

operation and kernel execution runs serially one

device after the other. This is because, the CUDA

operations on each device are carried out using

single thread.

• If the “for” loop over the devices (variable “idev” in

the code on the left) is parallelized using OpenMP,

each CUDA device will be handled in parallel.

Classification: RESTRICTED

Multi-Thread Multi GPU Single Node Vector Addition

The same code in the last slide, after parallelizing the for-loop over CUDA devices using openMP

by adding the line #pragma omp parallel for, and compiling with enabling OpenMP, gives the

following profile:

While profiling, --

trace=cuda

flag/option was

used. (“osrt” was

skipped).

nvcc compilation

needs –

Xcompiler –

fopenmp flags

The code needs

the line:

#include

<omp.h> in the

preamble

Classification: RESTRICTED

Matrix Multiplication with and without Shared Memory

Shared memory:

• A portion of L1 cache can be used as shared memory. These memories are located in each SM

-- fast accessible than global memory. These are called “shared” since they can be shared by

all threads in the block. (Refer to slide 8 for a diagrammatic view)

• If a chunk of a memory is being frequently used by several threads in a block of an SM, it is

advisable to store them in the shared memory area of the SM.

Two version of matrix multiplication code with and without shared memory:

• We have two versions of the matrix multiplication shown in the next slides.

• Their comparison is first shown with respect to the overall run time below.

Classification: RESTRICTED

Matrix Multiplication without and with Shared Memory

Without shared memory: With shared memory:

Image credit: https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Classification: RESTRICTED

Matrix Multiplication without and with Shared Memory

Without shared memory: With shared memory:

• All matrices live in global memory

• Every element of the matrix C is

computed on a thread.

• The entire row of A and the column of

B shown in red are accessed from

global memory by the thread for the

red square in C.

• Accessing from global memory is

expensive since it requires more clock

cycles than accessing from shared

memory in the L1 cache

• All matrices live in global memory

• The orange regions live in the shared

memory of the block.

• Since each block is scheduled with in

an SM, copying this band of A and B to

the shared memory location of the SM

speeds up the calculation.

• The shared memory is specified by

__shared__ specifier.

The full codes can be in the files matrixmult.cu and matrixmult_shared.cu

Classification: RESTRICTED

Matrix Multiplication with and without Shared Memory

After inserting CUDA-profiler API in the code, we compile and profile:

Classification: RESTRICTED

Matrix Multiplication without Shared Memory

Visualizing the profile report obtained when not using the shared memory

The matrix dimensions have been set as 32768 x 32768 for each matrix.

The kernel roughly takes 12.2 seconds when not using the shared memory

Classification: RESTRICTED

Matrix Multiplication with Shared Memory

For the same problem, the kernel roughly takes only 8 seconds

when using the shared memory with a speed up of 35%

Visualizing the profile report obtained when using the shared memory

Classification: RESTRICTED

Pinned vs Pageable Memories

Pinned Memory
• The host memory is page-locked (i.e., persistent in RAM).

• It makes the asynchronous memory operations possible.

• The CUDA functions cudaMallocHost() and cudaHostAlloc() are used to allocate the pinned

memory.

Pageable Memory
• The content of host memory can be frequently swapped to storage devices.

• Not fast when compared to pinned memory.

• Asynchronous memory operations are not possible with this memory.

• This is the default memory allocated using the “new” keyword of C++.

Example: Let us consider the two versions of codes for similar operation shown in the next slide.

Their runtime vastly differ as shown below:

Classification: RESTRICTED

Pinned vs Pageable Memories

Code for pageable memory and synchronous

copy between host and device:

Code for pinned memory and asynchronous copy

between host and device:

We will profile these two codes and present the timeline in the next two slides.

Classification: RESTRICTED

Pageable Memory and Synchronous Copy

As can be seen, all operations take place serially for more than 20 seconds.

Classification: RESTRICTED

Pinned Memory and Asynchronous Copy

As can be seen, all operations take place in less than 1 second.

Classification: RESTRICTED

3. Profiling MPI Codes

Classification: RESTRICTED

MPI Profiling

Nsight System support two

implementations of MPI:

• MPICH

• OpenMPI (Used mostly in

ASPIRE2A PLUS)

“nsys profile” command’s

flags for MPI:

• - - trace = mpi This flag

ensure that MPI’s API calls

are profiled.

• - - mpi_impl = openmpi |

mpich This flag with “mpich”

value is mandatory if using

MPICH. By default, it is

assumed to be OpenMPI

Some important MPI Calls that can be profiled:

Classification: RESTRICTED

Sample MPI Code: Matrix Multiplication

Classification: RESTRICTED

Sample MPI Code: Matrix Multiplication

The features in this code (required for understanding the profiling)

• Performs the Matrix multiplication 𝑻 = 𝑴𝑵

• Uses tiled domain decomposition

• Uses 4 domains for the complex double matrix 𝑻

• Matrix 𝑴 is split into two row blocks. Matrix 𝑵 is split into two column blocks.

• Rank 0 sends two chunks of data to each of ranks 1,2, and 3 after completing

the multiplication on its share of data chunk. The ranks 1,2 and 3 receives them

first and send does the multiplication afterwards.

• Rank 0 received one chunk of data from each of ranks 1, 2 and 3

• Uses Eigen package for the Openmp implementation of matrix multiplication.

We use two threads in the code.

Classification: RESTRICTED

Single Node MPI Profiling

In a single-node profiling of multiple MPI processes, it is sufficient to lump

the reports of all processes into a single file.

The “nsys” command precedes the mpirun command in this case

Let us visualize the generated report_dd4.nsys-rep.

• The generated report_dd4.nsys-rep is shown on the left.

• Under each process, the MPI calls are shown in timeline

view in the next slide.

• Each of MPI’s timeline can also be viewed under events

view by right-clicking.

• For simplicity we did not capture CPU activity.

Classification: RESTRICTED

Single Node MPI Profiling

Six MPI_Send()

from Rank 0

Two MPI_Recv()

by other Ranks

• The Rank 0 sends the data late to other nodes since it does the multiplication on

the data meant for itself first.

• The other ranks wait for the data from Rank 0, since it does multiplication only after

receiving them.

Classification: RESTRICTED

Single Node MPI Profiling

You can right-click on the row for “MPI” to get the “Events View”.

The Events View of the MPI row of Rank-1 is shown below:

• Selecting one item in the Events View will highlight that

item on the Timeline View as shown above.

• The Description field shows more information, the rank

of the source, bytes received, and the message tag.

Note that this rank, Rank 1, has two

MPI_Recv’s and one MPI_Send

which are consistent with the source

code shown 4 slides before.

Classification: RESTRICTED

Multi-Node MPI Profiling

When profiling multi-node MPI jobs

• Unlike in the case of single-node MPI profiling, the mpirun and its options

should appear first in the command line followed by nsys and its options, which

are then followed by the application (and its options, if any).

• The profile reports of the processes of different nodes cannot be written on a

single file.

• Multiple report files for each of the MPI process can be created by using the

environment variable OMPI_COMM_WORLD_RANK declared by the mpirun

wrapper script of OpenMPI. This variable will have the rank of each MPI

process as its value at each such process.

• This is done by attaching in the commandline a string

“%q{OMPI_COMM_WORLD_RANK}” to the filename for the reports.

• In the case of MPICH the environment variable PMI_RANK is to be used.

Classification: RESTRICTED

Multi-Node MPI Profiling: Matrix Multiplication

Let us profile the same code using this method on multiple nodes as shown below

As can be noted from this, four report files have been

generated since we used 4 MPI process.

Classification: RESTRICTED

Multi-Node MPI Profiling: Matrix Multiplication

The generated multiple reports can be opened and rearranged by

undocking them and then docking at the corners we prefer.

Classification: RESTRICTED

Profiling a Chosen MPI Process

If only a single or subset of MPI processes only need to be profiled, a

wrapper bash script like the one below can be used:

In this case, the report10.nsys-rep would contain the profiling

information for Rank-0 only.

Gives execute

permission

Classification: RESTRICTED

4. Profiling Using NVTX

Classification: RESTRICTED

NVTX: Introduction

• NVTX can register traces in the code for visualizing the instances of, and ranges

between NVTX API calls.

• Requires the include statement: #include <nvtx3/nvtx3.hpp>

• In ASPIRE2A PLUS, the modules cuda/12.6.1 or cuda/12.6.2 is to be loaded to

access NVTX3.

• The following path variable need to be set (despite the module above is loaded.

These modules will be corrected later to make this take effect): export

CPLUS_INCLUDE_PATH= /app/apps/cuda/12.6.2/nsight-systems-2024.5.1/target-

linux-x64/nvtx/include/

• For C++, there is a wealth of NVTX API calls available to group and visualize the

code.

• However, for beginners the NVTX functions such as Range and Marks will suffice.

• NVTX annotations are already in use in the opensource projects like Pytorch, so

that it can be visualized when enabled while profiling

Classification: RESTRICTED

NVTX: Introduction

• An NVTX Range annotates a range of continuous statements.

• Among the two types of ranges, namely unique and scoped, the scoped

ranges are easier to handle with less profiling overhead.

NVTX Ranges

• It captures the time duration of the execution of a scope “{ contents

between braces in the code}” where this range is declared.

• This can be declared by nvtx3::scoped_range r{"some_name"};

• In the case of functions, one can use, NVTX3_FUNC_RANGE() which

takes the function name as the name of the range.

Scoped Ranges

Classification: RESTRICTED

NVTX: Introduction

• A location in the code can be visualized by

annotating with markers

• Example: nvtxMark("Important Event Occurred");

• Useful for debugging.

NVTX Markers

• Nested ranges can be defined nvtxRangePush(“some name”); and

nvtxRangePop(); (See the figure above for clarity).

• nvtxRangePop() ends the range started by the most recent

nvtxRangePush(“ <a string> ”)

• In the case of functions, one can use, NVTX3_FUNC_RANGE().

Event Markers

Classification: RESTRICTED

NVTX Example: Matrix Multiplication

Let us consider the source code:

The features of this code

• The code performs five iterations

• At each iteration, it calls two functions: One

of them performs multiplication on two

complex double matrices.

• The other performs the same, but on a

couple of real double matrices.

• Uses NVTX3_FUNC_RANGE() in each

function. Therefore, these ranges will be

named after their function names.

• Uses scoped range for each loop and

names it “loop range”

Classification: RESTRICTED

In this example, the Eigen package is used for matrix

multiplication only to minimize the length of the code for

brevity, and to focus on the usage of NVTX API calls.

The usage of NVTX in a CUDA code could be similar.

NVTX Example: Matrix Multiplication

Let us profile this code as shown below:

Classification: RESTRICTED

NVTX Example: Matrix multiplication

Upon visualizing this report, “report_nvtx.nsys-rep”, we see:

Iteration

range

Complex

double matrix

multiplication

range

Real double

matrix

multiplication

Event view: Complex double matrix takes 3.5 times more time than real double matrix for multiplicationClassification: RESTRICTED

5. Profiling Python Codes
Including Pytorch Modules

Classification: RESTRICTED

NVTX Python: Introduction

NVTX offers sufficient tools to profile a Python code. The reference URL:

https://nvidia.github.io/NVTX/python/reference.html

Annotations

• nvtx.Annotate is a decorator for functions which allows them to be set with

messages and colours that need to shown in the visualization tools such as Nsight

Systems.

• Examples:

• Can also be used as a context manager as in:

• This is similar to the scoped range for whole of a function’s scope or other scopes

that we saw earlier in the case of C++.

import nvtx

Classification: RESTRICTED

NVTX Python: Introduction

Domains and Categories

• nvtx.Domain is a major grouping of a section of the code by naming it with a name.

• It is a class that offers methods for annotating ranges and marking locations of the

code with chosen names.

• Python’s imported modules may be already using a domain with a name specific to

that module in order to visualize them in the Nsight Systems.

• Domains can be created as: my_domain = nvtx.get_domain(“domain name”)

• The usage of the domains will be covered in the subsequent slides but using them

when profiling causes less overhead.

• Categories: These are further groupings of the codes under a chosen domain.

These are not classes unlike the domains but just labels for viewing them under

different colours and names in the timespan of their domain in the Nsight system.

Classification: RESTRICTED

NVTX Python: Introduction

Markers

• nvtx.mark is used to mark any event for the visualization tool. Example:

nvtx.mark("Loss > Limit", color='blue', domain=“n", category=“c")

• Push/pop Ranges: These mark a range of the code region in a single thread by a

name and colour. Example:

nvtx.push_range("parsing", color='blue', domain="domain", category=“c")

code for parsing

nvtx.pop_range() # Ending the scope of the most recent push_range()

• Start/end Ranges: These are markers that can span several threads within its range.
nvtx.start_range(“a name", color='blue', domain="d", category=“c")

code

nvtx.stop_range() # Ending the scope of the most recent stop_range()

Classification: RESTRICTED

NVTX Python: Introduction

Markers with nvtx.Domain()

• nvtx.Domain.mark() is used to mark any event for the visualization tool. Example:

domain = nvtx.get_domain('my domain’)

attr = domain.get_event_attributes(color='red’)

attr.message = "a is zero now"

domain.mark(attr)

• Nvtx.Domain()’s Push/pop Ranges: Same as before, but for domains. Example:

domain = nvtx.Domain('my_domain’)

attributes = domain.get_event_attributes(

message='range 1', color='blue’)

domain.push_range(attributes)

The code snippet that we want to mark by this range

domain.pop_range()

• These methods under the Domain class will take less overhead. The counter parts in

the previous slides are called global markers, while these methods are called domain

markers
Classification: RESTRICTED

NVTX Python: Example: Matrix Arithmetic

Let us consider the code that uses only the global

versions of NVTX markers:
This code has the following schema:

Domain: Complex

Category: Mult

calls:

matmult()

element_mult()

Category: Add

calls:

matadd()

Domain: Real

Category: Mult

calls:

matmult()

element_mult()

Category: Add

calls:

matadd()

Classification: RESTRICTED

NVTX Python: Example: Matrix Arithmetic

Features of this code required for understanding the profiling report:

• This code does arithmetic under two different datatypes:

(a) Complex double – Forms a domain

(b) Real double – The second domain

• Under each domain it performs two categories of arithmetic:

(a) Multiplication – First category

(b) Addition – Second category

• Under Multiplication category, it calls two functions:

(a) matmult() – performs matrix multiplication

(b) element_mult() – performs elementwise multiplication

• Under Addition category, it calls one function:

(a) matadd() – performs matrix addition

Profiling

the code

The generated report is

shown in the next slide

Classification: RESTRICTED

NVTX Python: Example: Matrix Arithmetic

Upon visualizing this report, “report1.nsys-rep”, we see:

The overhead to declare and

assign complex double

matrices

complex

double

matrix

multiplication

complex

double matrix

element wise

multiplication

complex

double

matrix

addition

Similarly, for

real double

matrices

Classification: RESTRICTED

NVTX Python: Example: Matrix Arithmetic

Findings from the report

• The overhead in declaring and assigning complex matrices is enormous.

Note that these are objects with memory allocations for both real and

imaginary parts, and with all methods for complex arithmetic and functions

sch as finding the real part, modulus, phase, etc.

• Due to this overhead the matrix multiplication on the complex double data

starts quite late.

• Such overhead is absent in the case of real double data.

• The elementwise multiplication and addition almost take similar time duration.

Classification: RESTRICTED

NVTX Python: Pinned vs Pageable Memories

Classification: RESTRICTED

Let us consider the following example code to demonstrate the difference between pageable and pinned memory

Pinned Memory H to D Copying

Pageable Memory H to D Copying

The profile is shown in the next page

NVTX Python: Pinned vs Pageable Memories

Classification: RESTRICTED

As can be seen, the HtoD pinned memory copy taken 1/5th of the time taken by pageable memory.

NVTX Python: Example: Automatic Annotation

Automatic Annotations

• A code that has not been annotated as shown on

right, can be profiled by annotating all functions

automatically without changing the code.

• The automatic annotation and profiling of the

code on the right is performed as below:

The profiled result is shown on the left.

However, this is not giving a deep insight like

we did in the previous slides. You can make

minimum edit in the code with following lines

to focus on a specific area of our code

Classification: RESTRICTED

Python: cProfile: Matrix Multiplication

cProfile is a Python core module for

profiling general Python codes.

Let us consider the matrix

multiplication code shown below:

Upon profiling the above code as

shown in the screenshot, we see

that the element-wise multiplications

takes more time than the matrix

multiplication. (Probing this

surprising result is beyond the

scope of this workshop)

Classification: RESTRICTED

Profiling Pytorch Models Using “torch.Profiler”

• Pytorch has inhouse profiling tools in the form of context managers.

• The results can be sorted in terms of “Self CPU time”, CPU time, CUDA time, etc.

• The results could also be viewed in Chrome browser

A sample

visualisation in

chrome browser

Classification: RESTRICTED

Profiling Pytorch Models: Iris Classification

Iris flower classification model: Let us consider a classification model on Iris dataset

Classification: RESTRICTED

Profiling Pytorch Models: Iris Classification

The features of this code:

• Loads Iris flower dataset that has four

features (X) and one target label (y).

• It has three classes, so 3 different y.

• Our model named “SimpleNet()” uses two

fully connected layer, also known as

Feedforward, linear or MLP layers.

• Uses Cross Entropy loss and Adam

optimizer with learning rate 0.01.

• Trains for 50 epochs without batching

Classification: RESTRICTED

Profiling Pytorch Models: torch.Profiler

• Pytorch provides a class to profile a portion of the code in a context manager:

profiler.profile(with_stack=True, profile_memory=True)

• In the above options, “use_cuda” is deprecated. The CUDA can be disabled by using

“activities” option (see the documentation). It is enabled by default if GPU is available.

• The torch.Profiler also provides a way of annotating function calls with chosen names

each in a different context manager.

Example: profiler.record_function(“a chosen name”)

Here, “with_stack=True” ensures referring back to the

source code while reporting the profiling information.

Classification: RESTRICTED

Profiling Pytorch Models: Iris Classification

• Let us profile the code for Iris Classification shown earlier.

• The relevant snippets of the code where changes have been made are shown below.

• The inserted lines have been boxed in cyan color.

Classification: RESTRICTED

Profiling Pytorch Models: Iris Classification

The first three inserted lines have been

introduced in the earlier slides. Now let

us focus on the lines below.

• Profiler.export_chrome_trace(“trace

_json”): The method of the Profiler

class helps to save the profile log in a

json format suitable for view in chrome

browser under chrome://tracing

• Profiler.key_averages(group_by_sta

ck_n=5): This averages the respective

“keys” (or the quantities that will be

reported) over the last five entries of

recent call stack.

• Profiler.table(sort_by=“cpu_time_to

tal”): The table method outputs the

result in the form of a table. Here

cpu_time_total refers to the CPU time

taken by including the child processes

that would have been stated by the

process mentioned in the rows of the

table. One can choose to sort only by

the main process by the option

self_cpu_time.

• Profiler.table(sort_by=“gpu_time_to

tal”): Same as the above but for the

time consumed by the processes that

used GPU.

The printed table on the screen while

running the code and the visualization

are presented in the next couple of

slides.

Classification: RESTRICTED

Profiling Pytorch Models: Iris Classification

• The two tables printed on the screen: The top one sorts by total CPU time.

• The bottom one is after sorting by the total GPU time.

Classification: RESTRICTED

Profiling Pytorch Models: Iris Classification

• Once loading the trace.json in chrome://tracing press the arrow button shown below.

• This will allow you to select the region in the timeline.

• Select the whole of the wavy-looking region which corresponds to the epochs. This will

display the stats in a table below as shown.

Profiling Pytorch Models: Using Nsight Systems

• The profiling by automatic NVTX annotations are also possible in the latest versions of

Nsight Sytems (Versions 2025.1 and above).

• But these versions will be installed only in future in ASPIRE 2A PLUS after the

December MOS 2025.

• Once installed change the CUDA version to the latest by loading the appropriate CUDA

module.

• Then the pytorch code can be profiles as shown in the following screenshot:

Classification: RESTRICTED

Profiling Torchrun Process: Using Nsight Systems

• We will cover Torchrun in “Advanced Workshop on Parallel Computing Models”.

• A specific NCCL rank of the process group can be profiled as shown in the

screenshot below:

The boxed

command is

similar to the one

introduced earlier.

The

target_python_scri

pt.py can have

NVTX annotations

that we saw

earlier.

Classification: RESTRICTED

6. Debugging using GDB,
CUDA-GDB and PDB

Classification: RESTRICTED

Debugging with GDB

• The GNU Debugger (GDB) is a powerful tool to debug C and C++ codes.

• To use this tool, the compiler flag “-g” need to be passed at the time of

compiling. This generates the executable informed with the line numbers

of the source code to give a source level support. Example:

• Once the executable is generated with this flag, the GDB session can be started as

below:

Classification: RESTRICTED

Debugging with GDB

Once into the GDB session, there are a set of commands to navigate the source code

while executing them line by line. Some of the most useful once are below:

• b or break <line number> – Introduction of breakpoints at a chosen line number.

Instead of line number, one can also mention a function name to pause the execution

before calling that function.

• r or run <options to executable, if any> - run the code from the start until the

breakpoint.

• delete – deletes all the breakpoints. delete <number> deletes only that breakpoint.

• info b – lists the breakpoints with their number.

• l or list <line number> – Prints few lines from the source code around the specified

line number.

• p or print <variable name> – Prints the value of the variable

• s or step – step into the next line by executing the current line. If next line is a

function call, enter into it.

• n or next – step over the next line by executing the current line. If next line is a

function call, execute the whole of the function without executing it.

• u or until – same as n but don’t iterate over loops to next iteration.

Classification: RESTRICTED

GDB: Example with Matrix Multiplication

• Let us debug matmult_buggy.cpp shown below with a deliberately introduced bug.

• The line 11 is buggy. “<=“ should actually be “<“

Classification: RESTRICTED

GDB: Example with Matrix Multiplication

Let us introduce a breakpoint at line number 11, just before the actual bug, and list the

code around that number as shown. The run the code until that breakpoint.

Then let us step through the code line-

by-line using the command s (or step):

One can see that it is an iteration over

k value.

Classification: RESTRICTED

GDB: Example with Matrix Multiplication

Then, buggy line is stepped over as shown. Once the error message is shown,

one can inspect the variable values to find out the reason for the error.

As shown in the screenshot:

• The number of columns of the matrix A, i.e., colsA is 3.

• This means that its index can run only from 0 to 2.

• However, the k has picked up a value of 3 which attempts to access the matrices A

and B outside their boundaries in memory.

• This catches the bug. Changing “<=“ to “<“ solves it.

Though we have debugged, one can see that call stack by using the “bt” or

backtrace as shown below, which would help identifying bugs in a nested call stacks:

Classification: RESTRICTED

GDB: Debugging MPI Communication

• Debugging MPI Communication involves attached MPI processes to GDB.

• Consider the following source code:

• In this code 2 MPI processes are

used.

• Rank 0 sends a data to Rank 1 but

fails to receive the data sent from

Rank 1.

• Then the Rank 1 calls

“MPI_BARRIER()” in the end. The

rule is that this function need to be

called by all other processes. Since

this is not called by the Rank 0, this

will cause the program to hang.

Classification: RESTRICTED

GDB: Debugging MPI Communication

Let us compile the code and run it in the background. Because this program is

buggy, the MPI communications will hang, thus allowing us time for attaching the

MPI processes to GDB and debug.

After giving execution command, list the processes of this executable to find the

process-ids:

We see that the processes 3478548 and 3478550 are the MPI processes.

Classification: RESTRICTED

GDB: Debugging MPI Communication

• Then attach the first process to the GDB and find out where the code hangs:

• The left screenshot corresponds to rank 0.

• As said by the last line, this rank hangs in the statement, MPI_FINALIZE() (Line 31 of the source

code shown before). This means that it has finished its part and waiting for the other process also to

reach this statement.

• But the Rank 1, shown on right, hangs in the line 28 of the source code, which is MPI_BARRIER()

statement. Since this statement is not executed by Rank 0, Rank 1 waits for it to execute, causing

the over all hanging.

(“where” is another name for “backtrace”)

Classification: RESTRICTED

Debugging with CUDA-GDB

CUDA-GDB is similar to GDB with respect to debugging the host code.

• Debug specific thread in the GPU

• Focus on threads in a block

• Focus the debugging to specific kernels

• Print the values of variables in the GPU

• Set breakpoints in the kernel function.

• Check the GPU memory

• Print the values of arrays in GPU kernels

• Trace the stack of calls in GPU to

different device kernels.

• Print instructions and registers

Enabling debugging for both the host and device codes:

Classification: RESTRICTED

Debugging with CUDA-GDB

The general workflow is similar to that

of GDB.

• b or break <line number>

• r or run <options to executable, if

any>

• delete

• info b

• l or list <line number>

• p or print <variable name>

• s or step

• n or next

• u or until

Apart from these operations, CUDA-GDB also

the following important additional commands

• set cuda break_on_launch application

• Conditional: break <kernel_func_name> if

threadIdx.x == 15 and blockIdx.x==1

• cuda kernel <k> block <I,j,k> thread <l,m,n>

• info cuda devices; info cuda threads, etc

• set cuda memcheck on

• Setting autostepping for precise error mesg.

Classification: RESTRICTED

Inspecting Vector Addition with CUDA-GDB

Let us consider the sample code below. It has been line-numbered for the easy of presentation.

Classification: RESTRICTED

Inspecting Vector Addition with CUDA-GDB

Let us start the cuda-gdb session on the vectadd_cudagdb executable as shown in

three slides before and set the breakpoint before kernel launch.

The command line

argument for the

executable

• Here we have stepped into the kernel and have inspected the

running index and the resultant vector after the first iteration.

• The line number of the breakpoint is shown as 6

Classification: RESTRICTED

Inspecting Vector Addition with CUDA-GDB

Let us restart the session and set breakpoint at line 9. Then inspect the value of “ i “

The value of 𝑖 = 32,

since the computation

takes by warp after warp.

In block(1,0,0) and thread(100,0,0), we get i = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ×
𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 = 100 × 512 + 100 = 51300

Classification: RESTRICTED

Inspecting Vector Addition with CUDA-GDB

The GPU information can be obtained, while the code has been halted at the breakpoint, as

follows:

From this, we note the following:

• We have 8 H100 GPUs each with 80 GB high bandwidth memory.

• SM’s are of the compute category 9.0 under the NVIDIA’s categorization for

CUDA capability.

• Each GPU has 132 SM’s.

• Each SM can schedule 64 warps at a time, that is 2048 threads at a time.

• Each warp has 32 threads

• For each thread, there are 256 instructions in the register file.

• We are using only one GPU at the moment for the vector-addition program.

Classification: RESTRICTED

Inspecting Vector Addition with CUDA-GDB

We can get the call stack information from any of these equivalent

commands : bt, backtrace, where, and info stack.

• Since there is only one kernel the output looks simpler in the above screenshot.

• The kernel calls other kernels, there will be a stack of their calls in the output.

Classification: RESTRICTED

Compute-sanitizer: Inspecting Vector Addition

Compute-sanitizer

This is a tool to check illegal memory accesses, stack overflow, race conditions and errors

related to synchronization.

For more info: https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html

For examples of using it on a couple of buggy codes, please refer to:

https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/

Classification: RESTRICTED

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/

PDB: Debugging Python Codes

Python module PDB debugs codes in a manner GDB debugs C or C++ codes

All of the commands that we saw with GDB are applicable

• For an example to play with, let us

consider the code eig_debug.py

shown on the left.

• This code does not have any bugs,

but the next slides demonstrates

that the workflow with PDB is same

as that of GDB.

• In this program eigenvalues of a

matrix A is found by three different

algorithms, the last being the

generalized eigenvalue method.

Classification: RESTRICTED

PDB: Debugging Python Codes

In the workflow we have shown, the debugging session is started as:

python –m pdb eig_debug.py

Then the rest of the way to navigate the source code line by line is same as we did

in the case of gdb.

Classification: RESTRICTED

Contact Us

Contact Us

Website : https://nscc.sg

Email : help@nscc.sg

Helpdesk : https://keris.service-now.com/csm

Contact : +65 6645 3412

Self Service

Portal : https://help.nscc.sg/

Classification: RESTRICTED

https://nscc.sg/
mailto:help@nscc.sg
https://keris.service-now.com/csm
https://keris.service-now.com/csm
https://keris.service-now.com/csm
https://help.nscc.sg/

Email : help@nscc.sg

Classification: RESTRICTED

mailto:help@nscc.sg

Thank

You

NSCC.SG

Classification: RESTRICTED

	Slide 1: ASPIRE2A+ Advanced Workshop on Profiling and Debugging
	Slide 2: Contents
	Slide 3: 1. Profiling Using Nsight Systems
	Slide 4: Introduction to Nsight
	Slide 5: Introduction to Nsight : Accessing ASPIRE2A+
	Slide 6: Introduction to Nsight Systems
	Slide 7: 2. Profiling CUDA Activities Using Nsight Systems
	Slide 8: Basics: GPU Memory Hierarchy and Thread Blocks
	Slide 9: nsys profile: Example with Vector Addition
	Slide 10: nsys profile: Example with Vector Addition
	Slide 11: nsys profile
	Slide 12: nsys profile: Important Flags
	Slide 13: nsys profile: Important Flags
	Slide 14: Analysing on GUI: Analysis Summary
	Slide 15: Analysing on GUI: Timeline View of Vectoradd
	Slide 16: Analysing on GUI: Diagnostic Summary
	Slide 17: Analysis on Command Line Using “nsys stats”
	Slide 18: Profiling Vector Addition: Some Reflections
	Slide 19: Profiling Vector Addition: Some Reflections (cont…)
	Slide 20: Single Thread Multi GPU Single Node Vector Addition
	Slide 21: Multi-Thread Multi GPU Single Node Vector Addition
	Slide 22: Matrix Multiplication with and without Shared Memory
	Slide 23: Matrix Multiplication without and with Shared Memory
	Slide 24: Matrix Multiplication without and with Shared Memory
	Slide 25: Matrix Multiplication with and without Shared Memory
	Slide 26: Matrix Multiplication without Shared Memory
	Slide 27: Matrix Multiplication with Shared Memory
	Slide 28: Pinned vs Pageable Memories
	Slide 29: Pinned vs Pageable Memories
	Slide 30: Pageable Memory and Synchronous Copy
	Slide 31: Pinned Memory and Asynchronous Copy
	Slide 32: 3. Profiling MPI Codes
	Slide 33: MPI Profiling
	Slide 34: Sample MPI Code: Matrix Multiplication
	Slide 35: Sample MPI Code: Matrix Multiplication
	Slide 36: Single Node MPI Profiling
	Slide 37: Single Node MPI Profiling
	Slide 38: Single Node MPI Profiling
	Slide 39: Multi-Node MPI Profiling
	Slide 40: Multi-Node MPI Profiling: Matrix Multiplication
	Slide 41: Multi-Node MPI Profiling: Matrix Multiplication
	Slide 42: Profiling a Chosen MPI Process
	Slide 43: 4. Profiling Using NVTX
	Slide 44: NVTX: Introduction
	Slide 45: NVTX: Introduction
	Slide 46: NVTX: Introduction
	Slide 47: NVTX Example: Matrix Multiplication
	Slide 48: NVTX Example: Matrix Multiplication
	Slide 49: NVTX Example: Matrix multiplication
	Slide 50: 5. Profiling Python Codes Including Pytorch Modules
	Slide 51: NVTX Python: Introduction
	Slide 52: NVTX Python: Introduction
	Slide 53: NVTX Python: Introduction
	Slide 54: NVTX Python: Introduction
	Slide 55: NVTX Python: Example: Matrix Arithmetic
	Slide 56: NVTX Python: Example: Matrix Arithmetic
	Slide 57: NVTX Python: Example: Matrix Arithmetic
	Slide 58: NVTX Python: Example: Matrix Arithmetic
	Slide 59: NVTX Python: Pinned vs Pageable Memories
	Slide 60: NVTX Python: Pinned vs Pageable Memories
	Slide 61: NVTX Python: Example: Automatic Annotation
	Slide 62: Python: cProfile: Matrix Multiplication
	Slide 63: Profiling Pytorch Models Using “torch.Profiler”
	Slide 64: Profiling Pytorch Models: Iris Classification
	Slide 65: Profiling Pytorch Models: Iris Classification
	Slide 66: Profiling Pytorch Models: torch.Profiler
	Slide 67: Profiling Pytorch Models: Iris Classification
	Slide 68: Profiling Pytorch Models: Iris Classification
	Slide 69: Profiling Pytorch Models: Iris Classification
	Slide 70: Profiling Pytorch Models: Iris Classification
	Slide 71: Profiling Pytorch Models: Using Nsight Systems
	Slide 72: Profiling Torchrun Process: Using Nsight Systems
	Slide 73: 6. Debugging using GDB, CUDA-GDB and PDB
	Slide 74: Debugging with GDB
	Slide 75: Debugging with GDB
	Slide 76: GDB: Example with Matrix Multiplication
	Slide 77: GDB: Example with Matrix Multiplication
	Slide 78: GDB: Example with Matrix Multiplication
	Slide 79: GDB: Debugging MPI Communication
	Slide 80: GDB: Debugging MPI Communication
	Slide 81: GDB: Debugging MPI Communication
	Slide 82: Debugging with CUDA-GDB
	Slide 83: Debugging with CUDA-GDB
	Slide 84: Inspecting Vector Addition with CUDA-GDB
	Slide 85: Inspecting Vector Addition with CUDA-GDB
	Slide 86: Inspecting Vector Addition with CUDA-GDB
	Slide 87: Inspecting Vector Addition with CUDA-GDB
	Slide 88: Inspecting Vector Addition with CUDA-GDB
	Slide 89: Compute-sanitizer: Inspecting Vector Addition
	Slide 90: PDB: Debugging Python Codes
	Slide 91: PDB: Debugging Python Codes
	Slide 92: Contact Us
	Slide 93
	Slide 94

