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1. Profiling Using Nsight Systems
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Introduction to Nsight

Nsight Systems

Nsight Compute

Nsight

Nsight comprises:

1. Nsight Systems

2. Nsight Compute

3. Nsight Graphics 

(Not covered here)

• Nsight Systems profiles the overall workload

• Nsight Compute profiles the CUDA kernels in detail

Nsight Systems:

• Helps in identifying the bottlenecks

• Shows activities on a timeline

• Profiles various libraries and APIs. 

Examples:

CUDA, NVTX ,MPI, OSRT, OpenMP, 

CuBLAS, CuDNN, CuSparse

Nsight Compute:

• Reports on SM/memory utilization and clock cycles

• Correlate to the source code

• Gives advice based on pre-set rules

• Provides launch statistics (influenced by grid and block 

sizes) 

• Provides warp-state statistics (to identify the warp idling)
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Introduction to Nsight : Accessing ASPIRE2A+

Nsight is available upon loading a CUDA module

The commands:
nsys Nsight Systems

ncu Nsight Compute

Permissions:

Normal users: 

Root permission needed for the following:

• Most of the Nsight Systems’ flags (or options) available

• All of Nsight Compute

• Nsight Systems’ following flags:

• --cpuctxsw CPU context switch

• --gpuctxsw GPU context switch

• --backtrace CPU backtrace

• --cudabacktrace GPU backtrace

• --sample –s Sampling with a frequency

• --ftrace Linux kernel’s function trace

• --gpu-metrics-devices Conflicts with DCGM

• Other flags related to gpu metrics

• Nsight Systems generates an output file 

with extension *.nsys-rep, which will need 

to be transferred from ASPIRE 2A+ and 

visualized locally on your laptop. This is 

due to the fact that x11 forwarding has 

been disabled on the compute nodes.

• Install the client for Nsight Systems on 

your laptop by using 

https://developer.nvidia.com/nsight-

systems/get-started
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Introduction to Nsight Systems

• Nsight Systems is the profiling tool 

from NVIDIA used in ASPIRE 2A+

• System-wide profiling (all 

components including computations, 

OS runtime functions, code 

annotations by the user, memory 

access and communications)

• Visualization: Reports can be 

visualized to spot the locations of the 

code that requires optimization

Visualization Window in local laptop:

• Profile: Launching the application, profiling, and 

generating the report in one go.

• Launch, Start and Stop: Used in an interactive 

mode for toggling the start and end of the profiling 

period while the application is running.

• Analyze: Get a condensed table report on the 

screen to quickly view the time spent on CUDA 

and memory movements between host and 

device

• Stats: Used for generating a detailed table report. 

A text equivalent of the timeline view on the GUI. 

Useful for parsing and pipelining as input for 

further processing on command-line  

Important switch options:

Example below uses the switch, “analyze” on a report 

generated earlier by profile:
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2. Profiling CUDA Activities 
Using Nsight Systems
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Basics: GPU Memory Hierarchy and Thread Blocks
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Thread blocks:

• A thread block can contain up 

to 2048 threads in H100.

• Each block is executed in each 

SM in round-robin fashion

GPU Memory consists of:

• DRAM (80 GB in H100)

• L2 Cache (50 MB in H100)

• L1 Cache (256 KB in H100): 

➢ Located within each SM

➢ A portion of this can be used as Shared Memory

Global memory

Each H100 has 132 SM

L1 

Cache

Control

Cores

Warp:

• A group 32 threads executed in locked step 

using SIMT parallelism. 

• H100 Allows 64 warps per SM

Threads in a block can 

share the “shared 

memory” address 

space, if used with 

__shared__ specifier



nsys profile: Example with Vector Addition
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Allocate 
A, B & 

C in 
Host & 
Device

Assign 
A & B in 

Host

Copy A
& B
from 

Host to 
Device

Launch 
CUDA 
Kernel 
from 
Host

Copy C
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Device 
to Host

Free A, 
B & C in 
Host & 
Device

Let us consider a simple CUDA application: 

Vector Addition C = A + B

The workflow can be described by the following diagram:

A

B

C

A

B

C

Host Memory Device Memory

CUDA 

Kernel

Device to Host

Host to Device



nsys profile: Example with Vector Addition

Let us consider the following source code:

This code uses a CUDA 

kernel (GPU Compute 

function), “vectoradd()”. It 

also uses “CUDA profiler 

API”.

This code has the following 

important operations:

1. Memory allocation in 

the host and device

2. Copy two buffers from 

host to device

3. Launching kernel

4. Copy a buffer from the 

device to host.

5. Freeing the memory in 

the host and the 

device.

6. The code takes a 

parameter from the 

command line: the 

length of the vectors.
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nsys profile

Profiling the code:

nsys profile --trace=cuda,osrt --capture-range=cudaProfilerApi ./vectadd 10000000

switch Options/flags for the switch application Options/parameters 

for the application

Compiling the code:
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nsys profile: Important Flags

Important flags of profile switch:

--trace

Trace option is used to trace the usage of various API’s in the workload. Examples 

include: cuda, nvtx, osrt, cudnn, cusparse, openacc, openmp, osrt, mpi

Example:  --trace=cuda,nvtx,osrt

• Selecting “cuda” will cause the profiler to capture the time-ranges spent on memory 

movements from host to device, vice versa, and on the CUDA kernels. 

• The option NVTX is covered separately in later sides. 

• The option “osrt” causes the profiler to capture the usage of OS’s system functions.

• If the option “mpi” is used, it will result in the capturing of the time spent on MPI 

communications. By default, OpenMPI implementation for MPI is assumed.

• Similarly the OpenMP API calls also can be captured by specifying “openmp”, but 

this requires compilers with OpenMP version 5.0 or later.
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nsys profile: Important Flags

--capture-range

• The “capture-range” flag is used to specify a window in the code for profiling the API 

calls of CUDA or NVTX. This will result in a report containing the timeline of our 

interest. The options for this flag can be: none, cudaProfilerApi, nvtx

Example:  --capture-range=cudaProfilerApi,nvtx

• However, note that appropriate “include” directive need to be present in the source 

code. (Please refer to the source code provided in the previous two slides)

• The option, --capture-range=cudaProfilerApi tells Nsight Systems to profile the CUDA 

API calls specified only between the calls to cudaProfileStart() and cudaProfileStop() 

functions.

--delay=600

• Skip the first 600 seconds

--duration=600

• Profile for only 600 seconds
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Analysing on GUI: Analysis Summary

Open the generated report “report4.nsys-rep” in the GUI that you have installed as mentioned in slide 4.  

Apart from the above information, the “analysis summary” also reports on the 

hardware such as CPU, GPU, NIC and on the environment variables
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Analysing on GUI: Timeline View of Vectoradd

Three memory 

allocations on 

the GPU

Two CPU-to-

GPU memory 

copy

CUDA Kernel GPU-to-CPU 

memory copy

Deallocation of the 

GPU memory

Hovering the 

mouse over 

these will show 

the memory 

throughputs 

and size

CPU Activity

Printing on 

the screen

Hover the mouse to get more 

information on each timeline items  
Classification: RESTRICTED



Analysing on GUI: Diagnostic Summary

The code has run for 164 milliseconds. The warning messages shows inability to capture 

certain events due to the absence of root permission to profile CPU and GPU context switches.
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Analysis on Command Line Using “nsys stats”
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Profiling Vector Addition: Some Reflections

Some observations from the past four slides:

From the Analysis Summary view, we get:

• Host info: hostname and specs of host, GPU device, GPU driver and NIC.

• User info: login id and home folder

• Executable and profiler options: The full command line options used to generate this 

report.

• Paths: List of modules loaded, and the paths used for executables and libraries are 

captured. Useful for debugging.

• Scheduler info: Path to the working directory and the temporary local storage provided by 

the scheduler,

• IB/Ethernet info: The info on NIC contains whether it is IB or Ethernet. This will help in 

setting the environment variables for NVSHMEM and NCCL HCA list which should contain 

only IB HCA’s for GPU Direct RDMA communications.
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Profiling Vector Addition: Some Reflections (cont…)

From the Timeline View:

• Memory vs kernel: The memory allocation, copying from host to device, vice versa, and 

deallocation of the GPU memory consumes time far greater than the time required for 

kernel execution. 

• H2D vs D2H throughput: Copying same size buffer from host to device is several times 

faster than device to host. This is because we use synchronous copying which requires 

CPU to take part in a role to receive the data from device (GPU). Asynchronous copying 

could help speeding this up.

• Kernel time: The time taken by kernel is negligible, implying the Nsight Compute is not 

needed for this. 

• Memory management has no overhead on CPU: The memory allocation and deallocation 

operations are independent of CPU. This is evident from the fact that the CPU is fully 

utilized for OSRT functions during these timeframes. 

From the stats:

• Sorted by sum: It can be noted from the slide 13 that the stats have been collected for 

each type of CUDA activity, for example, cudaMalloc, and sorted by the summed value over 

each distinct activities.
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Single Thread Multi GPU Single Node Vector Addition

• The code for single GPU vector-addition has been 

modified as on the left. This was run using 8 

GPU’s.

• The profiled result on timeline is shown at the 

bottom of this slide. In the row for “CUDA API”, 8 

bursts have been shown, each for each GPU. They 

are the replicas (almost) of the single GPU case.

• It should be noted that each device’s memory 

operation and kernel execution runs serially one 

device after the other. This is because, the CUDA 

operations on each device are carried out using 

single thread. 

• If the “for” loop over the devices (variable “idev” in 

the code on the left) is parallelized using OpenMP, 

each CUDA device will be handled in parallel.

Classification: RESTRICTED



Multi-Thread Multi GPU Single Node Vector Addition

The same code in the last slide, after parallelizing the for-loop over CUDA devices using openMP

by adding the line #pragma omp parallel for, and compiling with enabling OpenMP, gives the 

following profile:

While profiling, --

trace=cuda

flag/option was 

used. (“osrt” was 

skipped).

nvcc compilation 

needs –

Xcompiler –

fopenmp flags

The code needs 

the line: 

#include 

<omp.h> in the 

preamble
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Matrix Multiplication with and without Shared Memory

Shared memory:

• A portion of L1 cache can be used as shared memory. These memories are located in each SM 

-- fast accessible than global memory. These are called “shared” since they can be shared by 

all threads in the block. (Refer to slide 8 for a diagrammatic view)

• If a chunk of a memory is being frequently used by several threads in a block of an SM, it is 

advisable to store them in the shared memory area of the SM.

Two version of matrix multiplication code with and without shared memory:

• We have two versions of the matrix multiplication shown in the next slides.

• Their comparison is first shown with respect to the overall run time below.
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Matrix Multiplication without and with Shared Memory

Without shared memory: With shared memory:

Image credit: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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Matrix Multiplication without and with Shared Memory

Without shared memory: With shared memory:

• All matrices live in global memory

• Every element of the matrix C is 

computed on a thread.

• The entire row of A and the column of 

B shown in red are accessed from 

global memory by the thread for the 

red square in C.

• Accessing from global memory is 

expensive since it requires more clock 

cycles than accessing from shared 

memory in the L1 cache

• All matrices live in global memory

• The orange regions live in the shared 

memory of the block.

• Since each block is scheduled with in 

an SM, copying this band of A and B to 

the shared memory location of the SM 

speeds up the calculation.

• The shared memory is specified by 

__shared__ specifier.

The full codes can be in the files matrixmult.cu and matrixmult_shared.cu
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Matrix Multiplication with and without Shared Memory

After inserting CUDA-profiler API in the code, we compile and profile: 
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Matrix Multiplication without Shared Memory

Visualizing the profile report obtained when not using the shared memory

The matrix dimensions have been set as 32768 x 32768 for each matrix.

The kernel roughly takes 12.2 seconds when not using the shared memory
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Matrix Multiplication with Shared Memory

For the same problem, the kernel roughly takes only 8 seconds

when using the shared memory with a speed up of 35%

Visualizing the profile report obtained when using the shared memory
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Pinned vs Pageable Memories

Pinned Memory
• The host memory is page-locked (i.e., persistent in RAM). 

• It makes the asynchronous memory operations possible.

• The CUDA functions cudaMallocHost() and cudaHostAlloc() are used to allocate the pinned 

memory. 

Pageable Memory
• The content of host memory can be frequently swapped to storage devices. 

• Not fast when compared to pinned memory. 

• Asynchronous memory operations are not possible with this memory.

• This is the default memory allocated using the “new” keyword of C++.

Example: Let us consider the two versions of codes for similar operation shown in the next slide. 

Their runtime vastly differ as shown below:
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Pinned vs Pageable Memories

Code for pageable memory and synchronous 

copy between host and device:

Code for pinned memory and asynchronous copy 

between host and device:

We will profile these two codes and present the timeline in the next two slides.
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Pageable Memory and Synchronous Copy

As can be seen, all operations take place serially for more than 20 seconds.
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Pinned Memory and Asynchronous Copy

As can be seen, all operations take place in less than 1 second.
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3. Profiling MPI Codes
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MPI Profiling

Nsight System support two 

implementations of MPI:

• MPICH 

• OpenMPI (Used mostly in 

ASPIRE2A PLUS)

“nsys profile” command’s 

flags for MPI:

• - - trace = mpi This flag 

ensure that MPI’s API calls 

are profiled.

• - - mpi_impl = openmpi | 

mpich This flag with “mpich” 

value is mandatory if using 

MPICH. By default, it is 

assumed to be OpenMPI

Some important MPI Calls that can be profiled:
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Sample MPI Code: Matrix Multiplication
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Sample MPI Code: Matrix Multiplication

The features in this code (required for understanding the profiling)

• Performs the Matrix multiplication 𝑻 = 𝑴𝑵

• Uses tiled domain decomposition

• Uses 4 domains for the complex double matrix 𝑻

• Matrix 𝑴 is split into two row blocks. Matrix 𝑵 is split into two column blocks.

• Rank 0 sends two chunks of data to each of ranks 1,2, and 3 after completing 

the multiplication on its share of data chunk. The ranks 1,2 and 3 receives them 

first and send does the multiplication afterwards.

• Rank 0 received one chunk of data from each of ranks 1, 2 and 3

• Uses Eigen package for the Openmp implementation of matrix multiplication. 

We use two threads in the code.
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Single Node MPI Profiling

In a single-node profiling of multiple MPI processes, it is sufficient to lump 

the reports of all processes into a single file.

The “nsys” command precedes the mpirun command in this case

Let us visualize the generated report_dd4.nsys-rep.

• The generated report_dd4.nsys-rep is shown on the left.

• Under each process, the MPI calls are shown in timeline 

view in the next slide.

• Each of MPI’s timeline can also be viewed under events 

view by right-clicking. 

• For simplicity we did not capture CPU activity.
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Single Node MPI Profiling

Six MPI_Send() 

from Rank 0

Two MPI_Recv() 

by other Ranks

• The Rank 0 sends the data late to other nodes since it does the multiplication on 

the data meant for itself first.

• The other ranks wait for the data from Rank 0, since it does multiplication only after 

receiving them.
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Single Node MPI Profiling

You can right-click on the row for “MPI” to get the “Events View”.

The Events View of the MPI row of Rank-1 is shown below:

• Selecting one item in the Events View will highlight that 

item on the Timeline View as shown above. 

• The Description field shows more information, the rank 

of the source, bytes received, and the message tag.

Note that this rank, Rank 1, has two 

MPI_Recv’s and one MPI_Send

which are consistent with the source 

code shown 4 slides before.
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Multi-Node MPI Profiling

When profiling multi-node MPI jobs

• Unlike in the case of single-node MPI profiling, the mpirun and its options 

should appear first in the command line followed by nsys and its options, which 

are then followed by the application (and its options, if any).

• The profile reports of the processes of different nodes cannot be written on a 

single file. 

• Multiple report files for each of the MPI process can be created by using the 

environment variable OMPI_COMM_WORLD_RANK declared by the mpirun

wrapper script of OpenMPI. This variable will have the rank of each MPI 

process as its value at each such process.

• This is done by attaching in the commandline a string 

“%q{OMPI_COMM_WORLD_RANK}” to the filename for the reports.

• In the case of MPICH the environment variable PMI_RANK is to be used.
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Multi-Node MPI Profiling: Matrix Multiplication

Let us profile the same code using this method on multiple nodes as shown below

As can be noted from this, four report files have been 

generated since we used 4 MPI process.
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Multi-Node MPI Profiling: Matrix Multiplication

The generated multiple reports can be opened and rearranged by 

undocking them and then docking at the corners we prefer.
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Profiling a Chosen MPI Process

If only a single or subset of MPI processes only need to be profiled, a 

wrapper bash script like the one below can be used: 

In this case, the report10.nsys-rep would contain the profiling 

information for Rank-0 only.

Gives execute 

permission
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4. Profiling Using NVTX
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NVTX: Introduction

• NVTX can register traces in the code for visualizing the instances of, and ranges 

between NVTX API calls.  

• Requires the include statement: #include <nvtx3/nvtx3.hpp>

• In ASPIRE2A PLUS, the modules cuda/12.6.1 or cuda/12.6.2 is to be loaded to 

access NVTX3. 

• The following path variable need to be set (despite the module above is loaded. 

These modules will be corrected later to make this take effect): export 

CPLUS_INCLUDE_PATH= /app/apps/cuda/12.6.2/nsight-systems-2024.5.1/target-

linux-x64/nvtx/include/ 

• For C++, there is a wealth of NVTX API calls available to group and visualize the 

code. 

• However, for beginners the NVTX functions such as Range and Marks will suffice.

• NVTX annotations are already in use in the opensource projects like Pytorch, so 

that it can be visualized when enabled while profiling
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NVTX: Introduction

• An NVTX Range annotates a range of continuous statements.

• Among the two types of ranges, namely unique and scoped, the scoped 

ranges are easier to handle with less profiling overhead. 

NVTX Ranges

• It captures the time duration of the execution of a scope “{ contents 

between braces in the code}” where this range is declared.

• This can be declared by nvtx3::scoped_range r{"some_name"};

• In the case of functions, one can use, NVTX3_FUNC_RANGE() which 

takes the function name as the name of the range.

Scoped Ranges
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NVTX: Introduction

• A location in the code can be visualized by 

annotating with markers

• Example: nvtxMark("Important Event Occurred");

• Useful for debugging.

NVTX Markers

• Nested ranges can be defined nvtxRangePush(“some name”); and 

nvtxRangePop(); (See the figure above for clarity).

• nvtxRangePop() ends the range started by the most recent 

nvtxRangePush(“ <a string> ”)

• In the case of functions, one can use, NVTX3_FUNC_RANGE().

Event Markers
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NVTX Example: Matrix Multiplication

Let us consider the source code: 

The features of this code

• The code performs five iterations

• At each iteration, it calls two functions: One 

of them performs multiplication on two 

complex double matrices.

• The other performs the same, but on a 

couple of real double matrices.

• Uses NVTX3_FUNC_RANGE() in each 

function. Therefore, these ranges will be 

named after their function names.

• Uses scoped range for each loop and 

names it “loop range”

Classification: RESTRICTED

In this example, the Eigen package is used for matrix 

multiplication only to minimize the length of the code for 

brevity, and to focus on the usage of NVTX API calls. 

The usage of NVTX in a CUDA code could be similar.



NVTX Example: Matrix Multiplication

Let us profile this code as shown below: 
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NVTX Example: Matrix multiplication

Upon visualizing this report, “report_nvtx.nsys-rep”, we see: 

Iteration 

range

Complex 

double matrix 

multiplication 

range

Real double 

matrix 

multiplication

Event view: Complex double matrix takes 3.5 times more time than real double matrix for multiplicationClassification: RESTRICTED



5. Profiling Python Codes 
Including Pytorch Modules
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NVTX Python: Introduction

NVTX offers sufficient tools to profile a Python code. The reference URL: 

https://nvidia.github.io/NVTX/python/reference.html

Annotations

• nvtx.Annotate is a decorator for functions which allows them to be set with 

messages and colours that need to shown in the visualization tools such as Nsight 

Systems.

• Examples: 

• Can also be used as a context manager as in: 

• This is similar to the scoped range for whole of a function’s scope or other scopes 

that we saw earlier in the case of C++.

import nvtx
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NVTX Python: Introduction

Domains and Categories

• nvtx.Domain is a major grouping of a section of the code by naming it with a name. 

• It is a class that offers methods for annotating ranges and marking locations of the 

code with chosen names.

• Python’s imported modules may be already using a domain with a name specific to 

that module in order to visualize them in the Nsight Systems.

• Domains can be created as: my_domain = nvtx.get_domain(“domain name”)

• The usage of the domains will be covered in the subsequent slides but using them 

when profiling causes less overhead.

• Categories: These are further groupings of the codes under a chosen domain. 

These are not classes unlike the domains but just labels for viewing them under 

different colours and names in the timespan of their domain in the Nsight system.
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NVTX Python: Introduction

Markers

• nvtx.mark is used to mark any event for the visualization tool. Example:

nvtx.mark("Loss > Limit", color='blue', domain=“n", category=“c")

• Push/pop Ranges: These mark a range of the code region in a single thread by a 

name and colour. Example:

nvtx.push_range("parsing", color='blue', domain="domain", category=“c")

# code for parsing

nvtx.pop_range() # Ending the scope of the most recent push_range()

• Start/end Ranges: These are markers that can span several threads within its range.
nvtx.start_range(“a name", color='blue', domain="d", category=“c")

# code 

nvtx.stop_range() # Ending the scope of the most recent stop_range()
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NVTX Python: Introduction

Markers with nvtx.Domain()

• nvtx.Domain.mark() is used to mark any event for the visualization tool. Example:

domain = nvtx.get_domain('my domain’)

attr = domain.get_event_attributes(color='red’)

attr.message = "a is zero now"

domain.mark(attr)

• Nvtx.Domain()’s Push/pop Ranges: Same as before, but for domains. Example:

domain = nvtx.Domain('my_domain’)

attributes = domain.get_event_attributes(

message='range 1', color='blue’)

domain.push_range(attributes)

# The code snippet that we want to mark by this range

domain.pop_range()

• These methods under the Domain class will take less overhead. The counter parts in 

the previous slides are called global markers, while these methods are called domain 

markers
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NVTX Python: Example: Matrix Arithmetic

Let us consider the code that uses only the global  

versions of NVTX markers: 
This code has the following schema:

Domain: Complex

Category: Mult

calls:

matmult()

element_mult()

Category: Add

calls:

matadd()

Domain: Real

Category: Mult

calls:

matmult()

element_mult()

Category: Add

calls:

matadd()
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NVTX Python: Example: Matrix Arithmetic

Features of this code required for understanding the profiling report:

• This code does arithmetic under two different datatypes:

(a) Complex double – Forms a domain

(b) Real double – The second domain

• Under each domain it performs two categories of arithmetic:

(a) Multiplication – First category

(b) Addition – Second category

• Under Multiplication category, it calls two functions:

(a) matmult() – performs matrix multiplication

(b) element_mult() – performs elementwise multiplication

• Under Addition category, it calls one function:

(a) matadd() – performs matrix addition

Profiling 

the code

The generated report is 

shown in the next slide
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NVTX Python: Example: Matrix Arithmetic

Upon visualizing this report, “report1.nsys-rep”, we see: 

The overhead to declare and 

assign complex double 

matrices

complex 

double 

matrix 

multiplication

complex 

double matrix 

element wise 

multiplication

complex 

double 

matrix 

addition

Similarly, for 

real double 

matrices
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NVTX Python: Example: Matrix Arithmetic

Findings from the report

• The overhead in declaring and assigning complex matrices is enormous. 

Note that these are objects with memory allocations for both real and 

imaginary parts, and with all methods for complex arithmetic and functions 

sch as finding the real part, modulus, phase, etc.

• Due to this overhead the matrix multiplication on the complex double data 

starts quite late.

• Such overhead is absent in the case of real double data.

• The elementwise multiplication and addition almost take similar time duration.
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NVTX Python: Pinned vs Pageable Memories

Classification: RESTRICTED

Let us consider the following example code to demonstrate the difference between pageable and pinned memory 

Pinned Memory H to D Copying

Pageable Memory H to D Copying

The profile is shown in the next page



NVTX Python: Pinned vs Pageable Memories
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As can be seen, the HtoD pinned memory copy taken 1/5th of the time taken by pageable memory.



NVTX Python: Example: Automatic Annotation

Automatic Annotations

• A code that has not been annotated as shown on 

right, can be profiled by annotating all functions 

automatically without changing the code.

• The automatic annotation and profiling of the 

code on the right is performed as below:

The profiled result is shown on the left. 

However, this is not giving a deep insight like 

we did in the previous slides. You can make 

minimum edit in the code with following lines 

to focus on a specific area of our code
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Python: cProfile: Matrix Multiplication

cProfile is a Python core module for 

profiling general Python codes. 

Let us consider the matrix 

multiplication code shown below:

Upon profiling the above code as 

shown in the screenshot, we see 

that the element-wise multiplications 

takes more time than the matrix 

multiplication. (Probing this 

surprising result is beyond the 

scope of this workshop)
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Profiling Pytorch Models Using “torch.Profiler”

• Pytorch has inhouse profiling tools in the form of context managers.

• The results can be sorted in terms of “Self CPU time”, CPU time, CUDA time, etc.

• The results could also be viewed in Chrome browser

A sample 

visualisation in 

chrome browser

Classification: RESTRICTED



Profiling Pytorch Models: Iris Classification

Iris flower classification model: Let us consider a classification model on Iris dataset
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Profiling Pytorch Models: Iris Classification

The features of this code:

• Loads Iris flower dataset that has four 

features (X) and one target label (y).

• It has three classes, so 3 different y.

• Our model named “SimpleNet()” uses two 

fully connected layer, also known as 

Feedforward, linear or MLP layers.

• Uses Cross Entropy loss and Adam 

optimizer with learning rate 0.01.

• Trains for 50 epochs without batching
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Profiling Pytorch Models: torch.Profiler

• Pytorch provides a class to profile a portion of the code in a context manager:

profiler.profile(with_stack=True, profile_memory=True)

• In the above options, “use_cuda” is deprecated. The CUDA can be disabled by using 

“activities” option (see the documentation). It is enabled by default if GPU is available.

• The torch.Profiler also provides a way of annotating function calls with chosen names 

each in a different context manager. 

Example:  profiler.record_function(“a chosen name”)

Here, “with_stack=True” ensures referring back to the 

source code while reporting the profiling information. 
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Profiling Pytorch Models: Iris Classification

• Let us profile the code for Iris Classification shown earlier. 

• The relevant snippets of the code where changes have been made are shown below. 

• The inserted lines have been boxed in cyan color.
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Profiling Pytorch Models: Iris Classification

The first three inserted lines have been 

introduced in the earlier slides. Now let 

us focus on the lines below.

• Profiler.export_chrome_trace(“trace

_json”): The method of the Profiler 

class helps to save the profile log in a 

json format suitable for view in chrome 

browser under chrome://tracing

• Profiler.key_averages(group_by_sta

ck_n=5): This averages the respective 

“keys” (or the quantities that will be 

reported) over the last five entries of 

recent call stack.

• Profiler.table(sort_by=“cpu_time_to

tal”): The table method outputs the 

result in the form of a table. Here 

cpu_time_total refers to the CPU time 

taken by including the child processes 

that would have been stated by the 

process mentioned in the rows of the 

table. One can choose to sort only by 

the main process by the option 

self_cpu_time.

• Profiler.table(sort_by=“gpu_time_to

tal”): Same as the above but for the 

time consumed by the processes that 

used GPU.

The printed table on the screen while 

running the code and the visualization 

are presented in the next couple of 

slides.
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Profiling Pytorch Models: Iris Classification

• The two tables printed on the screen: The top one sorts by total CPU time. 

• The bottom one is after sorting by the total GPU time.
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Profiling Pytorch Models: Iris Classification

• Once loading the trace.json in chrome://tracing press the arrow button shown below. 

• This will allow you to select the region in the timeline. 

• Select the whole of the wavy-looking region which corresponds to the epochs. This will 

display the stats in a table below as shown.



Profiling Pytorch Models: Using Nsight Systems

• The profiling by automatic NVTX annotations are also possible in the latest versions of 

Nsight Sytems (Versions 2025.1 and above). 

• But these versions will be installed only in future in ASPIRE 2A PLUS after the 

December MOS 2025.

• Once installed change the CUDA version to the latest by loading the appropriate CUDA 

module. 

• Then the pytorch code can be profiles as shown in the following screenshot:
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Profiling Torchrun Process: Using Nsight Systems

• We will cover Torchrun in “Advanced Workshop on Parallel Computing Models”. 

• A specific NCCL rank of the process group can be profiled as shown in the 

screenshot below:

The boxed 

command is 

similar to the one 

introduced earlier. 

The 

target_python_scri

pt.py can have 

NVTX annotations 

that we saw 

earlier.
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6. Debugging using GDB, 
CUDA-GDB and PDB

Classification: RESTRICTED



Debugging with GDB

• The GNU Debugger (GDB) is a powerful tool to debug C and C++ codes. 

• To use this tool, the compiler flag “-g” need to be passed at the time of 

compiling. This generates the executable informed with the line numbers 

of the source code to give a source level support. Example:

• Once the executable is generated with this flag, the GDB session can be started as 

below:

Classification: RESTRICTED



Debugging with GDB

Once into the GDB session, there are a set of commands to navigate the source code 

while executing them line by line. Some of the most useful once are below:

• b or break <line number> – Introduction of breakpoints at a chosen line number. 

Instead of line number, one can also mention a function name to pause the execution 

before calling that function.

• r or run <options to executable, if any> - run the code from the start until the 

breakpoint.

• delete – deletes all the breakpoints. delete <number> deletes only that breakpoint.

• info b – lists the breakpoints with their number.

• l or list <line number> – Prints few lines from the source code around the specified 

line number.

• p or print <variable name> – Prints the value of the variable

• s or step – step into the next line by executing the current line. If next line is a 

function call, enter into it.

• n or next – step over the next line by executing the current line. If next line is a 

function call, execute the whole of the function without executing it.

• u or until – same as n but don’t iterate over loops to next iteration.
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GDB: Example with Matrix Multiplication

• Let us debug matmult_buggy.cpp shown below with a deliberately introduced bug. 

• The line 11 is buggy. “<=“ should actually be “<“
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GDB: Example with Matrix Multiplication

Let us introduce a breakpoint at line number 11, just before the actual bug, and list the 

code around that number as shown. The run the code until that breakpoint. 

Then let us step through the code line-

by-line using the command s (or step):

One can see that it is an iteration over 

k value.
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GDB: Example with Matrix Multiplication

Then, buggy line is stepped over as shown. Once the error message is shown, 

one can inspect the variable values to find out the reason for the error.

As shown in the screenshot:

• The number of columns of the matrix A, i.e., colsA is 3.

• This means that its index can run only from 0 to 2.

• However, the k has picked up a value of 3 which attempts to access the matrices A 

and B outside their boundaries in memory.

• This catches the bug. Changing  “<=“ to “<“ solves it.

Though we have debugged, one can see that call stack by using the “bt” or 

backtrace as shown below, which would help identifying bugs in a nested call stacks:
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GDB: Debugging MPI Communication

• Debugging MPI Communication involves attached MPI processes to GDB.

• Consider the following source code:

• In this code 2 MPI processes are 

used.

• Rank 0 sends a data to Rank 1 but 

fails to receive the data sent from 

Rank 1.

• Then the Rank 1 calls 

“MPI_BARRIER()” in the end. The 

rule is that this function need to be 

called by all other processes. Since 

this is not called by the Rank 0, this 

will cause the program to hang.
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GDB: Debugging MPI Communication

Let us compile the code and run it in the background. Because this program is 

buggy, the MPI communications will hang, thus allowing us time for attaching the 

MPI processes to GDB and debug.

After giving execution command, list the processes of this executable to find the 

process-ids:

We see that the processes 3478548 and 3478550 are the MPI processes.
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GDB: Debugging MPI Communication

• Then attach the first process to the GDB and find out where the code hangs: 

• The left screenshot corresponds to rank 0.

• As said by the last line, this rank hangs in the statement, MPI_FINALIZE() (Line 31 of the source 

code shown before). This means that it has finished its part and waiting for the other process also to 

reach this statement.

• But the Rank 1, shown on right, hangs in the line 28 of the source code, which is MPI_BARRIER() 

statement. Since this statement is not executed by Rank 0, Rank 1 waits for it to execute, causing 

the over all hanging.

(“where” is another name for “backtrace”)

Classification: RESTRICTED



Debugging with CUDA-GDB

CUDA-GDB is similar to GDB with respect to debugging the host code.

• Debug specific thread in the GPU

• Focus on threads in a block

• Focus the debugging to specific kernels

• Print the values of variables in the GPU

• Set breakpoints in the kernel function.

• Check the GPU memory

• Print the values of arrays in GPU kernels

• Trace the stack of calls in GPU to 

different device kernels.

• Print instructions and registers

Enabling debugging for both the host and device codes:
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Debugging with CUDA-GDB

The general workflow is similar to that 

of GDB.

• b or break <line number>

• r or run <options to executable, if 

any>

• delete

• info b

• l or list <line number>

• p or print <variable name>

• s or step

• n or next

• u or until

Apart from these operations, CUDA-GDB also 

the following important additional commands

• set cuda break_on_launch application

• Conditional: break <kernel_func_name> if 

threadIdx.x == 15 and blockIdx.x==1

• cuda kernel <k> block <I,j,k> thread <l,m,n>

• info cuda devices; info cuda threads, etc

• set cuda memcheck on

• Setting autostepping for precise error mesg.
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Inspecting Vector Addition with CUDA-GDB

Let us consider the sample code below. It has been line-numbered for the easy of presentation.
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Inspecting Vector Addition with CUDA-GDB

Let us start the cuda-gdb session on the vectadd_cudagdb executable as shown in 

three slides before and set the breakpoint before kernel launch.

The command line 

argument for the 

executable

• Here we have stepped into the kernel and have inspected the 

running index and the resultant vector after the first iteration. 

• The line number of the breakpoint is shown as 6
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Inspecting Vector Addition with CUDA-GDB

Let us restart the session and set breakpoint at line 9. Then inspect the value of  “ i “

The value of 𝑖 = 32, 

since the computation 

takes by warp after warp.

In block(1,0,0) and thread(100,0,0), we get i = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ×
𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 = 100 × 512 + 100 = 51300
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Inspecting Vector Addition with CUDA-GDB

The GPU information can be obtained, while the code has been halted at the breakpoint, as 

follows:

From this, we note the following:

• We have 8 H100 GPUs each with 80 GB high bandwidth memory.

• SM’s are of the compute category 9.0 under the NVIDIA’s categorization for 

CUDA capability.

• Each GPU has 132 SM’s.

• Each SM can schedule 64 warps at a time, that is 2048 threads at a time.

• Each warp has 32 threads

• For each thread, there are 256 instructions in the register file.

• We are using only one GPU at the moment for the vector-addition program. 
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Inspecting Vector Addition with CUDA-GDB

We can get the call stack information from any of these equivalent 

commands : bt, backtrace, where, and info stack. 

• Since there is only one kernel the output looks simpler in the above screenshot. 

• The kernel calls other kernels, there will be a stack of their calls in the output.
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Compute-sanitizer: Inspecting Vector Addition

Compute-sanitizer

This is a tool to check illegal memory accesses, stack overflow,  race conditions and errors 

related to synchronization. 

For more info: https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html

For examples of using it on a couple of buggy codes, please refer to: 

https://developer.nvidia.com/blog/debugging-cuda-more-efficiently-with-nvidia-compute-sanitizer/
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PDB: Debugging Python Codes

Python module PDB debugs codes in a manner GDB debugs C or C++ codes

All of the commands that we saw with GDB are applicable

• For an example to play with, let us 

consider the code eig_debug.py 

shown on the left.

• This code does not have any bugs, 

but the next slides demonstrates 

that the workflow with PDB is same 

as that of GDB.

• In this program eigenvalues of a 

matrix A is found by three different 

algorithms, the last being the 

generalized eigenvalue method.

Classification: RESTRICTED



PDB: Debugging Python Codes

In the workflow we have shown, the debugging session is started as:

python –m pdb eig_debug.py

Then the rest of the way to navigate the source code line by line is same as we did 

in the case of gdb.
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Contact Us

Contact Us

Website   : https://nscc.sg

Email       : help@nscc.sg

Helpdesk : https://keris.service-now.com/csm

Contact    : +65 6645 3412

Self Service 

Portal       : https://help.nscc.sg/

Classification: RESTRICTED

https://nscc.sg/
mailto:help@nscc.sg
https://keris.service-now.com/csm
https://keris.service-now.com/csm
https://keris.service-now.com/csm
https://help.nscc.sg/


Email : help@nscc.sg
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Thank 

You

NSCC.SG
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