
National Supercomputing Centre (NSCC) Singapore
A national research infrastructure providing supercomputing solutions for all 

By NSCC Singapore Managed Services Team

ASPIRE 2A+ 
INTRODUCTORY
WORKSHOP 

Updated on : 01 August 2024



Contents

A. Introduction to NSCC Singapore

B. HPC Introduction

C. ASPIRE 2A+

1. Architecture 5. Service Unit Allocation

2. Login Nodes 6. Software Environment

3. Storage 7. PBS Professional (Job Scheduler)

4. File Transfer 8. Usage Best Practices 

2



A. Introduction to NSCC Singapore
All terms of use are subject to the prevailing 

NSCC Acceptable Use Policy 

https://help.nscc.sg/aspire2aplus/aup/!

3

https://help.nscc.sg/aspire2aplus/aup/


The NSCC Singapore’s overarching goal is to 
accelerate research and innovation in Singapore by 
providing the computing power and expertise 
needed to solve complex and data-intensive 
research problems, ultimately leading to the 
development of new technologies, products, and 
services that benefit society.

Support Singapore’s 
R&D Initiatives

Attract Industrial 
Research Collaborations

Enhance Singapore’s 
Research Capabilities

A National Research Infrastructure funded by 
Singapore’s National Research Foundation (NRF) 
providing supercomputing resources as a horizontal 
enabling platform of Singapore’s Research, 
Innovation and Enterprise (RIE) ecosystem

High speed networks for HPC 
That connect researchers locally and globally.

National-level resource open to all national 
research initiatives at Institutes of Higher Learning, 
Research Institutes and the industry.

Singapore’s first national petascale facility 
and national platform that manages the 
nation’s high-performance computing (HPC) 
research resources.

Democratising Access to Supercomputing

National Supercomputing Centre (NSCC) Singapore

4



Growing the Local HPC Community

Our Local Partners Our International Partners

Founding Organisations

Institutes of 
Higher Learning

Healthcare

Industry

Alliance of Supercomputing 
Centres (ASC)

Research Institutes

5



B. HPC Introduction

6



What is HPC?

• HPC stands for High Performance Computing. 

• Tightly coupled servers that embody millions of processor cores with high-speed interconnect

Login Node The access point for users to interact with the HPC cluster

Compute 
Node 

Dedicated servers within the HPC cluster that perform the actual 
computations

Terminologies

• The use of distributed computing facilities for solving problems that need large computing power.

• Usually Measured in FLOPS (Floating point Operations Per Second)

7



Why Supercomputing?

More power for more complex research

¤

Faster and more efficient solutions

¤

Greater competitive edge for users

¤

Long-term savings

#AI, #analytics, #bigdata, #climatechange, #complexR&D, #datadriven, #digitaltwin, #digitaltransform, #drug targets, #genomics, 
#Industry4.0, #manufacturing, #pharmaceuticals, #product design, #quantum, #scenarios, #smartnation, #transport, #visualisation

SCIENTIFIC 
ANALYSIS & 
RESEARCH 

BIG DATA 
ANALYTICS

DEEP 
LEARNING
/ AI

CLIMATE 
MODELLING

ADVANCED 
MANUFACTURING

LIFE 
SCIENCES

DATA CENTRE & 
NETWORKING

COMPUTATIONAL 
FINANCE

8



Major Domains Where HPC Is In Use 

• Genome Processing 
• Molecular modeling
• Pharmaceutical design

• CFD
• Component Light 

weighting

• Computational Fluid 
dynamics (CFD)

• Crash Test Simulations

• Seismic Data Processing
• Wind Energy Enablement
• Optimization In Energy 

Sector

• Training Complex Models 
• Running Large scale data 

Analysis
• Natural language Processing 

• Weather Prediction
• Climate Modeling
• Environmental Simulations

LIFE 
SCIENCES

CLIMATE 
MODELLINGAEROSPACE

AUTOMOTIVE; DISCRETE 
MANUFACTURING ENERGY

ARTIFICIAL 
INTELLIGENCE 
AND MACHINE 
LEARNING 

9



HPC Use Case – Car Crash Analysis

• HPC (High-Performance Computing) indicates that high-speed calculation is used 
with large amounts of data

• HPC is used for areas such as global meteorological analysis, automobile crash 
analysis, wind flow analysis, oil exploration etc.

 
HPC ClusterCar Crash 

Analysis 

❶ Generate car mesh and 
materials as input data for 
a simulation

Input data

❸ Display Simulation 
Result

Simulation
Result

Desktop

Desktop

❷ Simulation software runs on 
the compute cluster

10



C. ASPIRE 2A+ Architecture

11



ASPIRE 2A+ Architecture Overview

  NTU login nodes A*Star login nodes

All other users

Network

Compute Nodes

12

All other users

Login Nodes

Load balancer(proxy)

NSCC Remote VPN

aspire2p.nus.edu.sg

asp
ire

2pntu.nscc
.sg

as
pi

re
2p

.a
-s

ta
r.e

du
.s

g aspire2p.sutd.edu.sg.a-star.edu.sg

aspire2p.nscc.sg



13

ASPIRE 2A+ DGX Cluster Details

ASPIRE 2A+ Components Specification

Compute Nodes NVIDIA DGX SuperPODTM 40 Nodes of DGX H100

Interconnect NVIDIA Quantum 2 base NDR InfiniBand

Storage Scratch ~ 2.5 PB, Home ~ 27.5 PB

DGX H100 Specification

CPU
Dual Intel Xeon Platinum 8480C Processors

Total Cores = 2 X 56 Cores = 112 Cores, 2.00 GHz (Base), 3.80 GHz (Max Boost)

System Memory GPU 2 TB

GPU 8 X NVIDIA H100 Tensor Core GPUs

GPU Memory 640 GB (80 GB on each GPU Card)

Storage 8 X 3.84 TB NVMe drives

Network 4 x OSFP Ports for 8 x NVIDIA ConnectX - 7 Single Port InfiniBand Cards
8 x 400 Gb/s InfiniBand

NVSwitch 4 x 4th generation NVLink that provides 900GB/s GPU-to-GPU bandwidth

Operating System DGX OS Ubuntu 22.04

Performance FP64-272 teraFLOPS, TF32 (Tensor Core) - 7.9 petaFLOPS, FP8-32 petaFLOPS



1 PFLOP (2016) to 10-20 PFLOPS (2025)

CURRENT 
ASPIRE 2A+

PREVIOUS  
ASPIRE 1 

Add-on Systems 
(ASPIRE 1+)

• AI.Platform (6 x DGX-1)
• 1,000 cores HTC 

System
• Koppen - 160 TFLOPS 

Cray XC-50, Climate 
System 

Awarded - 27 April 
2021 (ASPIRE 2A)

• 3.33PF GPU,  2.58PF 
CPU compute power

• 7x more powerful 
than previous 
ASPIRE1 

PREVIOUS 
ASPIRE 2A

ASPIRE 2A+

• 40 x DGX H100 
• 320 H100 GPUs total
• 13 PF (HPL 

Benchmark) 
• 27.5 PB  (projects) + 

2.5 PB (scratch) 
Storage

14



Innovation i4.0 Building

ASPIRE 2A+ Data Centre Location

15



2. Login Nodes 

16



Purpose of Login Nodes 
• ASPIRE 2A + features two login nodes configured in high availability (HA), allowing users to connect to 

DGX compute nodes for job execution. 
• NSCC login nodes are the entry point for users to access the ASPIRE 2A+ HPC system via the load 

balancer.
• NSCC login nodes should not be used to verify or build your applications.

Load Balancer
(proxy)

Organization Users



ASPIRE 2A+ Login Nodes

• All users from the following organisations are recommended to connect via high-speed 
access link to  access the system as shown below. 

• Organisation Users: Direct Access

Organisation Login Hostname FQDN 

NUS aspire2p.nus.edu.sg

NTU aspire2pntu.nscc.sg

Note:- NTU users will need to request NTU jumphost to access ASPIRE2A+ via 
aspire2pntu.nscc.sg

Please email your jumphost access request to hpcsupport@ntu.edu.sg
How to access jump host:- Using-NTU-JumpHost-to-NSCC-ASPIRE-2A+

ASTAR aspire2p.a-star.edu.sg

SUTD aspire2p.sutd.edu.sg

18

mailto:hpcsupport@ntu.edu.sg
https://entuedu.sharepoint.com/teams/ntuhpcusersgroup2/SitePages/Using-NTU-JumpHost-to-NSCC-ASPIRE-2A.aspx


ASPIRE 2A+ VPN Access

• All other users are required to connect via the NSCC VPN to access the system.

• VPN Users: VPN Access

19

Hostname FQDN

aspire2p.nscc.sg

login.asp2p.nscc.sg



Accessing Login Nodes 

• To access a login node, users typically use an SSH client to connect to the login 
node's hostname or IP address

• Windows ssh client : MobaXterm, putty

• Mac ssh client : Mac terminal

• Linux ssh client : Linux terminal 

Example : ssh to remote host using MobaXterm

Note : Users who are not connected to NUS, NTU, A*STAR, or SUTD network must ensure they are 
connected to their organization's VPN (default option) or NSCC VPN (for selected users only). 

20



3. Storage 

21



ASPIRE 2A+ Storage

File System Mount Point  Quota Per user Data Retention Policy 

Lustre $HOME/scratch 100TB
[Fixed] 30 Days Purge Policy

Lustre /home/users/<your_org>/<userid>
$HOME

50GB
[Fixed]

1 Year From Account 
Expiry

Lustre /data/projects/<project-id> Based on project Based On Project Expiry**

Local NVME /raid NA After Job completion 

Note : Data Management and Retention Policy
User and project storage allocated will be purged according to AUP

https://help.nscc.sg/aspire2p/aup/

**Project data will be archived 30 days after the project's expiry date.

22

https://help.nscc.sg/aspire2p/aup/


Check Storage Quota

To Check Home quota, please run command as shown below. 

]$ myquota 

23

Note: By default, each user has inode quota set to 200,000,000 inodes on the /scratch filesystem. 

As shown in the screenshot, only 1 inode has been used out of the total 200,000,000 inodes available. 
Even if there is sufficient storage space remaining on /scratch, you will not be able to create any new 
files or directories once your inode quota is reached.



Check Storage Quota

Check Project quota, please run command as shown below.  

]$ myquota –p <Project-ID>

24



Check Project Usage Breakdown

The myprojects command provides detailed information about project usage, 
user/project-specific details, and historical data reporting with customizable date ranges.

  
  To check Project usage breakdown by project users, please run a command as shown below.
 

  
  Where:  

]$  myprojects –p <Project-ID> -l -s <yyyy-mm-dd> -e <yyyy-mm-dd>

25

-p : Fetch project details for a specific project ID.

-l : Show detailed project usage.

-s : Specify the start date (in YYYY-MM-DD format) for detailed usage reporting. 
Defaults to yesterday if not specified.

-e : Specify the end date (in YYYY-MM-DD format) for detailed usage reporting. 
Defaults to yesterday if not specified.

-h : Display help for the command.



Check Project Usage Breakdown

 

26



4. File Transfer

27



Transfer Files From Local To ASPIRE 2A+ System 

Filezilla
• User-friendly: Easy graphical user interface.

SCP (Secure Copy Protocol)
• Simple & Secure: Use SSH for secure transfers.

Rsync

]$ scp /path/to/<sourcefile> <username>@<destination>:/path/to/<destination>

]$ rsync -avz /path/to/<source> <username>@<destination>:/path/to/<destination>

28



Transfer Files within ASPIRE 2A+ File System

How to navigate and move/copy data between Lustre File System

STEP 1 : Start a Screen Session

STEP 2 : Submit an Interactive Job

STEP 3 : Initiate the Transfer 

• How to share my folder with others?
• Refer to FAQ Point 5 https://help.nscc.sg/aspire2aplus/faqs

]$ screen -S <screen_name>

]$ qsub -I -q normal -l select=1:ncpus=14:ngupu=1:mem=50GB -l 
walltime=00:30:00 -P <yourProject> 

]$ cp –rv /path/to/source_file /path/to/destination_directory/

29



Introduction to Screen Command

What is Screen?
Screen is a terminal multiplexer that allows you to:

• Start a terminal session and keep it running even if you disconnect.
• Reconnect to the session at a later time.
• Run multiple terminal sessions within a single window.

Basic Screen Commands 
• Starting a new Screen Session with Screen Name

• Listing All Screen Sessions

• Reattaching to a Session

• Detaching from a Session

]$ screen -S <screen_name>

]$ screen -ls

]$ screen -r session_name

]$ Ctrl + A, then D

30



5. Service Unit Allocation 

31



Service Unit Allocation 

The Service Unit (SU) is the billing metric used by NSCC to measure compute and 
storage resource usage on an hourly basis.

Resource-Based Costing

• Different resources (e.g., CPU, GPU) have varying costs per hour.
• SUs serve as a currency to "purchase" these resources.

ASPIRE 2A+ Cost

• 1 GPU hour = 128 SUs (The GPUs are H100)

Example: If a job request 16 GPUs (spread across two nodes) for 3 hours. 

Total SU usage will be: 2 nodes * 8 GPUs * 3 hours * 128 SUs = 6144 SUs

Purpose

• Enables fair and accurate accounting for resource consumption.
• Helps users manage and budget their resource usage efficiently.

32



Call for Projects 

SU allocations are based on approved projects  

• Projects are allocated based on approval.

• Project ID will be allocated once the project is approved. 

• Project period is created based on the project allocation cycles.

• Project related approval, please help to contact projects-admin@nscc.sg

• Project member updates can be requested at any time by the project PI by sending a 

request to projects-admin@nscc.sg

More information in FAQs under https://help.nscc.sg 

33

mailto:projects-admin@nscc.sg
mailto:projects-admin@nscc.sg


6. Software Environment 

34



Environment Modules System 
• Environment modules are a tool for dynamically modifying the user environment via modulefiles.
• They are commonly used in HPC systems to manage different software versions and their 

dependencies. 

Benefits of Using Modules 
• Simplifies Environment Management: Easily switch between different software versions.
• Version Control : Different versions of the same software can coexist, allowing users to select the 

appropriate version of their task. 
• Simplifies Dependency Management

Environment 
Modules System 

PYTHON CUDA

python/3.10.14 python/3.11.9

Dependencies DependenciesDependenciesDependencies

cuda/12.2.2 cuda/12.6.2

35



Module Commands

Command Description

module list List the loaded modules

module avail List all module

module load <package name> Load module

module rm/unload <package name>
Unload module

**Please read the note below

module swap modulefile/1 modulefile/2 Swap loaded modulefile/1 with modulefile/2

module -l avail 2>&1 | egrep -i  "name" Searching for module

module show <package name> Show the configure information of module 

** Unloading module or module purge can cause software incompatibility.  

36



Software Environment

• ASPIRE 2A+ is designed for enroot containers.   It is designed to integrate well with 
high-performance computing (HPC) environments, leveraging the capabilities of enroot to optimize 
execution times.

• Key Concepts for enroot (https://github.com/NVIDIA/enroot)

• Adheres to the KISS principle and Unix philosophy

• Standalone (no daemon)

• Fully unprivileged and multi-user capable (no setuid binary, cgroup inheritance, per-user 
configuration/container store...)

• Easy to use (simple image format, scriptable, root remapping...)

• Little to no isolation (no performance overhead, simplifies HPC deployments)

• Fast Docker image import (3x to 5x speedup on large images)

• Built-in GPU support with libnvidia-container

• Users are highly recommended to build their applications in an enroot container prior to 
running them in ASPIRE 2A+.

37

https://github.com/NVIDIA/enroot
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Unix_philosophy
https://github.com/nvidia/libnvidia-container


Enroot Container Features

LIGHTWEIGHT AND MINIMALISTIC
Enroot is designed to be minimalistic, focusing on the essentials required to run containers 
without the overhead that comes with more complex runtimes.

NON-DAEMONISED
Unlike Docker, which relies on a daemon to manage containers, Enroot runs without a 
background service. This makes it easier to integrate into existing HPC systems and avoid 
potential security and performance issues related to daemon processes.

ROOTLESS CONTAINERS
Enroot emphasizes security by enabling unprivileged (rootless) container execution. This is 
crucial in HPC environments where granting root privileges is often not an option.

FILESYSTEM ISOLATION
It uses Linux namespaces for isolating the filesystem, but it doesn’t rely on cgroups or other 
advanced namespace features. This approach is simple yet effective for many HPC workloads.

COMPATIBILITY
Enroot is compatible with Docker images, allowing users to run Docker containers without 
needing Docker itself. This is particularly useful in environments where Docker might not be 
available or suitable due to its complexity or security concerns.

38



7. PBS Professional 
    (Job Scheduler)

39



PBS Pro (Portable Batch System)

PBS Pro is a powerful job scheduler widely used in high-performance computing (HPC) 
environments. 

It efficiently manages and schedules computing resources, enabling users to submit both 
batch and interactive jobs.

Key Features:
• Advanced Job Scheduling : Optimizes the order and timing of job execution to 

maximize resource utilization.

• Resource Allocation & Budgeting : Ensures fair and efficient distribution of resources 
across multiple users and projects.

• Comprehensive Job Monitoring : Provides detailed tracking and management of job 
statuses, ensuring smooth operation and timely completion.

40



Process Flow of a PBS Job

1. User submits job

2. PBS server returns a job ID
3. PBS scheduler requests a list of resources from the server *
4. PBS scheduler sorts all the resources and jobs *
5. PBS scheduler informs PBS server which host(s) that job can run on *
6. PBS server pushes job script to execution host(s)
7. PBS MoM executes job script
8. PBS MoM periodically reports resource usage back to PBS server *
9. When job is completed PBS MoM copies output and error files
10. Job execution completed/user notification sent

HOST A HOST B HOST C

PBS SCHEDULER

PBS SERVERJobID

ncpus
mem
host

pbsworks on HOST A

pbsworks

Note:  * This information is for debugging purposes 
only.  It may change in future releases.

Cluster Network

MoM

41



Job Queues & Scheduling Policies

Current default limits when not defined
• Default “ngpus” = 1
• Default “ncpus” = 14
• Default “mem” = 235GB
• Default Queue = normal
• Default Walltime = 00:05:00
• Resource Ratio = 1 ngpus:14 ncpus:235GB 

mem
• PBS will modify the request according to ratio, based 

on the “ngpus” requested, regardless of the “ncpus” 
and “mem” values in original request

normalqsub

aiq1
Max ngpus=7
Max walltime=24hrs
Small batch jobs

aiq2
Min 8 ngpus 
Max walltime=120hrs
Large batch jobs

default queue

route destinations

42

aidev
Max 8 ngpus
Max walltime=12hrs
Interactive Jobs

6 Nodes

32 Nodes*
(Number of nodes will reduce if 
reservations are made)



PBS Basic Commands

PBS commands are used to submit, manage, and modify jobs in a queue.

• Submit batch Jobs 

• qsub <job-script> 

• <job-script> file containing the instructions for the job, including the commands to execute, 
resource requests (e.g., CPU, memory), walltime, and other configuration settings.

• Check Job Status 

• qstat -answ  

• command output provides information about the currently running job on a PBS
        

 

43



PBS Basic Commands

Delete Jobs 

• Please find a JOB ID running by user before running qdel <job-id>
• qstat -au <username>

• qdel <job-id> 

44



Types of Job Submission
1. Interactive Jobs 
• Allows users to use compute node interactively.
• Useful for debugging, running short tests, transfer files and compile/build applications.
• Avoid using interactive jobs for production workloads. Use batch jobs instead.

� -I  : Interactive job

� -l select=1:ncpus=14:mem=235gb:ngpus=1 : Request for 1 node with 14 CPU cores and 
235gb memory and 1 GPU

� -l walltime=01:00:00 : Interactive job will be terminated after one hour

2. Batch Jobs
• Batch jobs are submitted using job scripts, which specify tasks, resource requirements, and 

execution commands.
• The scheduler manages the job script execution, allocating resources as requested. 
• Users don't need to stay logged in to monitor the batch job.

$] qsub –I –l select=1:ncpus=14:mem=235gb:ngpus=1 -l walltime=01:00:00 –q normal 
-P <Project-id> 

45



Software Environment (Enroot example)

• # Download and import the CUDA 10.0 base image from NVIDIA GPU Cloud

• $ enroot import 'docker://$oauthtoken@nvcr.io#nvidia/cuda:10.0-base'

• # Create a container from the imported image

• $ enroot create --name cuda nvidia+cuda+10.0-base.sqsh

• # List all available containers

• $ enroot list

• cuda

• # Compile the nbody sample inside the container

• $ enroot start --root --rw cuda sh -c 'apt update && apt install -y cuda-samples-10.0'

• $ enroot start --rw cuda sh -c 'cd /usr/local/cuda/samples/5_Simulations/nbody && make -j'

• # Run nbody leveraging the X server from the host

• $ export ENROOT_MOUNT_HOME=y NVIDIA_DRIVER_CAPABILITIES=all

• $ enroot start --env DISPLAY --env NVIDIA_DRIVER_CAPABILITIES --mount /tmp/.X11-unix:/tmp/.X11-unix cuda \

• /usr/local/cuda/samples/5_Simulations/nbody/nbody

• # Remove the container

• $ enroot remove cuda 46



AUTOMATED CONTAINER 
SETUP

EFFICIENT JOB 
PREPARATION

STREAMLINED 
CLEANUP

• Validates the Enroot image path 
and mount points, ensuring they 
are correctly specified

•  Automatically set the default 
`orte_launch_agent` supports 
orted and prted.

• Runs `enroot create` to initialize 
the container environment. 

• Setup the necessary 
environment variables and 
mount points as defined in the 
job script. 

• Remove enroot container after 
job completion.

• Clean up any Enroot directories 
created during the job. 

PBS Pro – Enroot adapter

The ENROOT ADAPTER provides a seamless experience for running enroot 
containerized workloads in PBS Pro. 

Here’s a breakdown of the key features:

47



PBS Sample Batch Job – Single node enroot container job

#!/bin/bash

#PBS -N my_enroot_job

### Here select=1 is to select 1 node with 7 gpus
#PBS -l select=1:ncpus=112:mem=1887gb:ngpus=7:mpiprocs=7:container_engine=enroot

#PBS -l walltime=24:00:00
#PBS -P <project-ID>

#PBS -q <queue-name>

#PBS -j oe

#PBS -l container_image=/absolute/path/to/tensorflow_image.sqsh
#PBS -l container_name=tensorflow
#PBS -l enroot_mounts="/source/path:/dest/path;/another/source:/another/dest"
#PBS -l enroot_env_file=/path/to/env_file

#Start enroot container and run the command
enroot start tensorflow mpirun -hostfile $PBS_NODEFILE python 
/workspace/nvidia-examples/cnn/resnet.py --layers 50 -b 512 -i 100

48



Pytorch Data Parallel Ex – Single Node – Multi-GPU 

Select 
Resources

Define container 
environment

Setup PBS  
Environment 

variables

Start Container 
with necessary 

arguments

#!/bin/bash

#PBS -N pytorch_dp_job

#PBS -l select=1:ngpus=2:container_engine=enroot

#PBS -l walltime=00:10:00

#PBS -P <project-id>

#PBS -q normal

#PBS -l container_image=~/enroot_images/nvidia+pytorch+23.10-py3.sqsh
#PBS -l container_name=nvidia+pytorch+23.10-py3
#PBS -l enroot_env_file=~/sample_jobs/container_env.conf

   cd $PBS_O_WORKDIR

enroot start nvidia+pytorch+23.10-py3 python 
~/pytorch_examples/torch_data_parallel_model.py --model simplenet --epochs 10 
--batch_size 128 --lr 0.0001   >> 
${PBS_O_WORKDIR}/pytorch_dp_job_${PBS_JOBID}.out

49



Explanation of Pytorch Data Parallel Example 

#PBS -N pytorch_dp_job # Job Name

#PBS -l select=1:ngpus=2:container_engine=enroot
# Resource selection 
# - Select 1 node with 2 GPUs
# - Use PBS-Enroot container adapter

#PBS -l walltime=00:10:00 # Walltime: Job will run for a maximum of 10 minutes

#PBS -P <project-id> # Project ID: Assign job to a project

#PBS -q normal
# Queue: Submitting to the 'normal' queue. Change if 
necessary.

#PBS -l container_image=~/enroot_images/nvidia+pytorch+23.10-py3.sqsh

#PBS -l container_name=nvidia+pytorch+23.10-py3

#PBS -l enroot_env_file=~/sample_jobs/container_env.txt

# Container details:
- Specify the container image path
- Set a container name for easier management
- Provide an environment file for container 
settings

cd $PBS_O_WORKDIR # Navigate to the job's working directory
50



NCCL MPI JOB – Multi Node – Multi-GPU 

Select 
Resources

Define 
container 

environment

Setup PBS  
Environment 

variables

Start Container 
with necessary 

arguments

#!/bin/bash
#PBS -l 
select=2:ncpus=112:mem=1880gb:ngpus=8:mpiprocs=8:container_engine=enroot
#PBS -l walltime=1:00:00
#PBS -P <project-id>
#PBS -q normal

#PBS -l container_name=nvidianccl
#PBS -l container_image=$HOME/NCCL/nvidia+tensorrt+23.12-py3.sqsh
#PBS -l enroot_env_file=~/NCCL/myenv.conf

cd $PBS_O_WORKDIR

enroot start nvidianccl mpirun -hostfile $PBS_NODEFILE 
/usr/local/bin/all_reduce_perf_mpi -b 8 -f 2 -g 1 -e 16G -n 8000

51



NCCL MPI JOB -  env config in container namespace

• To set environment variables across all containers in multi-node jobs, create a file with the 
variables and specify its path using the enroot_env_file directive:

#PBS -l enroot_env_file=~/NCCL/myenv.conf 

• This is optional and needed only when setting up the environment across all container 
namespaces.

52



PBS Sample Batch Job – Multi-Node enroot Container Job

#!/bin/bash

#PBS -N my_enroot_job

##Here select=3 is to select 3 node with 8 gpus each
#PBS -l select=3:ncpus=112: mem=1887gb:ngpus=8:mpiprocs=8:container_engine=enroot

#PBS -l walltime=48:00:00
#PBS -P <project-id>

#PBS -q <queue-id>

#PBS -j oe
#PBS -l container_image=/absolute/path/to/tensorflow_image.sqsh
#PBS -l container_name=tensorflow
#PBS -l enroot_mounts="/source/path:/dest/path;/another/source:/another/dest"
#PBS -l enroot_env_file=/path/to/env_file

#Start enroot container and run the command
enroot start tensorflow mpirun -hostfile $PBS_NODEFILE python 
/workspace/nvidia-examples/cnn/resnet.py --layers 50 -b 512 -i 100

53



Sample Environment File To Be Use In Job Script

$cat /path/to/env_file

# Sample environment file
VAR1=value1
VAR2=value2
PATH=/path/to/binary:$PATH
LD_LIBRARY_PATH=/path/to/lib:$LD_LIBRARY_PATH

54



 

8. Usage Best Practices

55



Resource Request Considerations

OPTIMIZE RESOURCE ALLOCATION
• Distribute Workloads: ensure that workloads are evenly distributed 

across the memory and GPU cards to avoid bottlenecks. 

NVIDIA DGX H100 GPU SYSTEM SPECIFICATIONS:
� 8 X NVIDIA H100 Tensor Core GPUs

� 640 GB (80 GB on each GPU Card)

Example : Memory distribution [1:4]

� 1 Core Configuration: 4 GB * 1 core

� 128 Cores Configuration: 440GB * 128 cores

56



Optimising and Scaling Your Computational Workloads 

• ALWAYS Start with Single GPU first (8 GPU card)

� Efficient Utilization : Ensure your application can utilize close to 100% of the 
compute capacity on GPU card before scaling your job.

� Usage Monitoring: Always monitor your workload using top and nvidia-smi 
for CPU and GPU workload respectively. 

• Scale to Multiple GPU Cards

� Incremental Scaling : Gradually increase the number of nodes or GPU cards 
example : 8, 16, 24, 32 etc. measuring performance for each configuration

� Parallel Efficiency : Study the workload performance for each configuration and 
choose the one the offers the best parallel efficiency for future workloads.

• GPU Workload (Make sure to install or load GPU version of your application)

� Read Documentation : Running workloads on GPUs requires using the correct 
application options. Ensure you are using the optimized options. 

57



Do's and Don'ts

• Install applications in Home or Project directory.

• Share files through Project directory.

• Regular housekeeping in Home, Project and 
Scratch directories. 

• Use Scratch directory for temporary files. 

� Move essential files to project directory after 
job completion. Note : Files in scratch are 
subjected to purging. 

• Use striping for large files on scratch directory by 
using ‘lfs setstripe’ command.

• Execute data transfer on loginnodes for optimal 
performance. 

• Utilize the ‘find’ and ‘rm’ commands for efficient file 
management.

• Avoid running any computational workload on login 

nodes.

• Avoid installing applications on Scratch directory.

• Avoid copying & pasting job scripts from web or 

Microsoft Windows OS. 

• Avoid static settings in .bashrc, instead make use of 

environment modules.

• Avoid setting world readable/writable files & directories 

on Home, Scratch and Project directories.

• Avoid creating/accessing large number of small files in 

scratch directory. 

• Avoid deleting large number of files using 

      “rm –rf *”.

Do’s Don’ts

58



Contact Us

Contact Us
Website   : https://nscc.sg

Email       : help@nscc.sg

Helpdesk : https://keris.service-now.com/csm

Contact    : +65 6645 3412

Self Service 
Portal       : https://help.nscc.sg/
 

59

https://nscc.sg/
mailto:help@nscc.sg
https://keris.service-now.com/csm
https://help.nscc.sg/


Email : help@nscc.sg

60

mailto:help@nscc.sg


Thank 
You

NSCC.SG

61


